Environmental Protection Agency Emergency Response (5102W) Number 6 September 1994 #### **Innovative Treatment Technologies: Annual Status Report** (Sixth Edition) 542R94005 | | | / - . | | | |---|--|------------------|--|--| - | | | | | | | | | | | EPA-542-R-94-005 Number 6 September 1994 ### INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT (Sixth Edition) U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC 20460 U.S. Environmental Protection Agency Region 5. Library (PL-12J) 77 West Jackson Boulevard, 12th Floor Chicago, IL 60604-3590 #### NOTICE obtain a copy of this report, fill out the request form on the next page and mail or fax it to: 68-C0-0047. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. To This material has been funded wholly or in part by the United States Environmental Protection Agency under contract number U.S. EPA/NCEPI P.O. Box 42419 Cincinnati, OH 45242 Fax Number: 513-891-6685 ## INNOVATIVE TREATMENT TECHNOLOGIES: ANNUAL STATUS REPORT ### Request to be on Mailing List states, EPA libraries, and representatives of other federal agencies. All project contacts listed in the report also receive a copy. If you would form and send or fax it to: like your name added to or deleted from the mailing list for future reports or would like a copy of the 6th edition, please complete the following This report is distributed once a year to Superfund management in U.S. EPA Headquarters and regional offices, pertinent EPA laboratories, Please **add** my name and address to the mailing list: Please send me a copy of the 6th Edition, EPA-542-R-94-005. My name is already on the mailing list. Please change the name and address. Name City Street or P.O. Box Company FROM: U.S. EPA/NCEPI P.O. Box 42419 Fax number: 513-891-6685 Cincinnati, OH 45242-0419 Please remove my name and address from the mailing list. I already have a copy of the 6th Edition, EPA-542-R-94-005. ŢO: State Zip #### **FOREWORD** contaminated waste sites, soils and ground water. One of TIO's goals is the removal of regulatory and institutional barriers to the cleanup. TIO's mission is to encourage government and industry to increase the use of innovative treatment technology to mitigate established the Technology Innovative Office (TIO) to promote the use of innovative treatment technologies for contaminated site vendors and the investment community. audiences, including federal agencies, states, consulting engineering firms, responsible parties, technology developers, technology development and use of innovative technologies. Another is the provision of richer technology and market information to target In April 1990, the U.S. Environmental Protection Agency's (EPA) Office of Solid Waste and Emergency Response (OSWER) communication between experienced technology users and those who are considering innovative technologies to clean up contaminated and numerous graphics and tables to assist the reader in understanding the data. We hope that this information will allow better sites, as well as enabling technology vendors to evaluate the market for innovative treatment technologies in Superfund for the next Department of Energy. We have expanded the report to include many new innovative projects selected by EPA in fiscal year 1993 information on innovative treatment projects at non-Superfund sites under the jurisdiction of the Department of Defense and the This report documents the status of innovative treatment technology use in the Superfund program. To a lesser extent, the report presents efforts such as the directive and this document will increase the reliance on new, less costly, or more effective technologies to address corrective action under the Resource Conservation and Recovery Act (RCRA), and underground storage tank cleanups. It is hoped that the problems associated with Superfund and other hazardous waste sites, and petroleum contamination forth seven initiatives to remove impediments from and create incentives for the use of innovative treatment technologies for Superfund, Use of Innovative Treatment Technologies in OSWER Programs (OSWER Directive 9380.0-17, June 10, 1991). This directive sets The use of innovative treatment technologies in Superfund and other EPA waste programs is addressed by a directive, Furthering the Walter W. Kovalick, Jr. Ph.D. Director, Technology Innovation Office ### **ACKNOWLEDGEMENTS** Protection Agency's Technology Innovation Office. This document was prepared under the direction of Ms. Linda Fiedler, work assignment manager for the U.S. Environmental ment technologies encourages the application of those technologies at other sites. Special acknowledgement is due the Regional and state staff listed as contacts for individual sites. They provided the detailed information in this document. Their cooperation and willingness to share their knowledge and expertise on innovative treat- #### **ABSTRACT** evaluate the market for innovative technologies in Superfund for the next several years. It also will be used by EPA's Technology considering innovative technologies to clean up contaminated sites. In addition, the information will enable technology vendors to Innovation Office to track progress in the application of innovative treatment technologies. (ROD) are included. The information will allow better communication between experienced technology users and those who are Energy (DOE). The status of most projects have been updated, and projects selected in fiscal year 1993 Superfund Records of Decision in the U.S. EPA Superfund Program and at some non-Superfund sites under the jurisdiction of the Departments of Defense (DoD) and This yearly report (formerly published twice a year) documents and analyzes the selection and use of innovative treatment technologies the use of the following innovative treatment technologies to treat ground water (in situ), soils, sediments, sludge, and solid-matrix technologies the use of which at Superfund and similar sites is inhibited by lack of data on cost and performance. This report documents Alternative treatment technologies are alternatives to land disposal. Innovative treatment technologies are alternative treatment - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - In situ flushing - In situ vitrification - Soil vapor extraction - Soil washing - Solvent extraction - Thermal desorption - Other technologies (air sparging, contained recovery of oil wastes, limestone barriers and furning gasification) innovative projects that have been completed and DOE staff. Appendix E also contains performance and operating data on the 25 remedial, 20 removal, and 7 non-Superfund these sections was collected through analyses of RODs, review of OSWER tracking systems, and interviews with EPA regional, DoD, C contain site-specific information for Superfund remedial, removal and other federal program sites respectively. The information for remedial, removal and other Federal program sites, at which innovative treatment has been selected or used. Appendices A, B, and removal actions, and 28 applications under other federal programs. Sections 1, 2, and 3 contain summary information for Superfund The document includes information on 290 applications of innovative treatment technologies for remedial actions, 31 applications for #### CONTENTS | Site Status and Technology Summary Matrix | SECTION 3: INNOVATIVE ACTIONS UNDER OTHER FEDERAL PROGRAMS | SECTION 2: INNOVATIVE SUPERFUND REMOVAL ACTIONS Frequency of Technology Selection Status of Innovative Technology Implementation Contaminants Addressed by Innovative Treatment Technologies Treatment Trains | SECTION 1: INNOVATIVE SUPERFUND REMEDIAL ACTIONS Frequency of Technology Selection Status of Innovative Technology Implementation Contaminants of Addressed by Innovative Treatment Technologies Quantity of Soil Addressed Treatment Trains | OVERVIEW Introduction What are Alternative and Innovative Treatment Technologies? Sources of Information for this Report Definitions for Specific Innovative Treatment Technologies | Notice Document Request Form Foreword Acknowledgements Abstract List of Figures List of Tables List of Abbreviations | |---|--|---|--|---|--| | 13 | 11 | 8
8
9
10 | 1
6
6
7 | 0V-1
0V-1
0V-1
0V-2 | Page
iii
iii
viiii
viiii
x | | Appendix A: Table A-1: Table A-2: Appendix B: Table B-1: Appendix C: Table C-1: Appendix E: Table E-1: Table E-2: Table E-3: Table E-4: Table E-4: Table E-5: Number | Superfund Remedial Actions: Site-Specific Information by Innovative Treatment Technology Superfund Remedial Actions: Established Treatment Technologies by Fiscal Year: Innovative Technologies at Superfund Removal Actions Superfund Removal Actions: Site-Specific Information by Innovative Treatment
Technology: Innovative Technologies at Actions: Under Other Federal Programs Other Federal Programs: Site-Specific Information by Innovative Treatment Technology Summary of Status Report Updates, Changes, and Deletions Completed Innovative Projects and Treatment Trains Superfund Remedial Actions: Performance Data on Completed Projects Other Federal Programs: Performance Data on Completed Projects Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies | Page A-1 A-68 B-1 C-1 D-1 E-11 E-11 E-19 E-22 E-25 | |--|--|--| | ppendix D
ppendix E:
able E-1:
able E-2: | Summary of Status Report Updates, Changes, and Deletions Completed Innovative Projects and Treatment Trains Superfund Remedial Actions: Performance Data on Completed Projects Superfund Removal Actions: Performance Data on Completed Projects | D-1
E-1
E-11 | | able E-2:
able E-3:
able E-4:
able E-5: | Superfund Removal Actions: Performance Data on Completed Projects Other Federal Programs: Performance Data on Completed Projects Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies Superfund Removal Actions: Treatment Trains with Innovative Treatment Technologies | E-19
E-22
E-25 | | 1 | LIST OF FIGURES | 1 | | | Superfund Remedial Actions: RODs Signed by Fiscal Year Superfund Remedial Actions: Source Control RODs by Fiscal Year | rage | | 3 Supe4 Supe | Superfund Remedial Actions: Overview of Source Control RODs Through Fiscal Year 1993 Superfund Remedial Actions: Treatment and Disposal Decisions for Source Control | 2 2 | | | Superfund Remedial Actions: Summary of Alternative Treatment Technologies Selected Through Fiscal Year 1993 | ω | | 6 Super | Superfund Remedial Actions: Number of Established Versus Innovative Treatment Technologies | 4 4 | | O
John C | Corresponding RODs | 4 | | | | n Ui | | 10 Supe | Superfund Remedial Actions: Project Status of Innovative Treatment Technologies as of June 1994 | 0 د | | | | 6 | | 12 Supe | Superfund Remedial Actions: Quantities of Soil to be Treated by Innovative Technologies | 12 | ### LIST OF FIGURES (Continued) | E-1 | 17 | ;
6 | : 15 | 14 | 13 | |---|--|--|---|--|---| | Superfund Remedial Actions: Treatment Trains with Innovative Treatment Technologies E | Sample of Projects Under Other Federal Programs: Status of Innovative Treatment Technologies as of June 1994 | Sample of Projects Under Other Federal Programs: Summary of Treatment Technologies as of June 1994 | Superfund Removal Actions: Application of Innovative Treatment Technologies | Superfund Removal Actions: Project Status of Innovative Treatment Technologies as of June 1994 | Superfund Removal Actions: Summary of Innovative Technologies Selected/Used as of June 1994 | | E-23 | 12 | 1 | 10 | 9 | ∞ | ### LIST OF ABREVIATIONS | MBOCA
NAPL
NFEC | MEK | KPRO | Wg | FY | FUDS | î | FAA | ESD | EECA | DNT | DLA | DEHP | DCE | DCA | СУ | BTX | BTEX | BCD | | ATTIC | ARCS | APEG | APC | AM | |---|------------------------------|---|----------------------------------|-------------------------------|-------------------------------------|---------|---|--|--------------------------------------|--------------------------|--------------------------|----------------------------|--|-----------------|-------------------------------|------------------------------|--|-------------------------------|----------------------------------|--|--|--|---|--------------------------| | 4,4'-Methylenebis(2-chloroaniline) Nonaqueous phase liquids Navy Facilities Engineering Command | Methyl ethyl ketone | Installation Restoration Program Potassium hydroxide/polvethylene glycol | Ground water | Fiscal year | Formerly used defense sites | Feet | Federal Aviation Administration | Explanation of significant differences | Engineering Evaluation/Cost Analysis | Dinitrotoluene | Defense Logistics Agency | Di(2-ethylhexyl phthalate) | Dichloroethylene | Dichloroethane | Cubic yards | Benzene, toluene, and xylene | Benzene, toluene, ethylbenzene, and xylene | Base catalyzed dechlorination | Center | Alternative Treatment Technology Information | Alternative remedial contracts strategy | Alkaline metal hydroxide/polyethylene glycol | Air pollution control | Action Memorandum | | USACE
USDA
VOC | TIO | TCF | S/S | SVOC | SACM | | SARA | | RSKERL | RPM | ROD | RD | RCRA | RA | PRP | PCP | PCE | РСВ | PAH | OU | OSWER | OSC | OERR | NPL | | U.S. Army Corps of Engineers U.S. Department of Agriculture Volatile organic compound | Technology Innovation Office | Trichloroethulene | Solidification and stabilization | Semivolatile organic compound | Superfund Accelerated Cleanup Model | of 1986 | Superfund Amendment and Reauthorization Act | Ada, Oklahoma (EPA) | | Remedial project manager | Record of Decision | Remedial design | Resource Conservation and Recovery Act | Remedial action | Potentially responsible party | Pentachlorophenol | Perchloroethylene (tetrachloroethylene) | Polychlorinated biphenyl | Polynuclear aromatic hydrocarbon | Operable unit | Office of Solid Waste and Emergency Response | On-scene coordinator | Office of Emergency and Remedial Response | National Priorities List | #### OVERVIEW #### Introduction can use this report in evaluating cleanup alternatives. Innovative innovative treatment technologies. also uses the information to track progress in the application of technology vendors can use it in identifying potential markets. TIO which innovative treatment technologies are being used. Site managers Superfund sites (sites addressed under other federal programs) at Superfund sites (both remedial and removal actions) and non-Superfund sites. The report contains site-specific information on Technologies: Annual Status Report to document the use of innovative Response (OSWER) has prepared this Innovative Treatment Protection Agency's (EPA) Office of Solid Waste and Emergency treatment technologies to remediate both Superfund and non-The Technology Innovation Office (TIO) of the U.S. Environmental report updates and expands information provided in the September be remediated—and information on 11 additional completed projects decision document used to specify the way a site, or part of a site, wil treatment technologies selected for remedial actions in fiscal year (FY) 1993 Superfund records of decision (ROD)—a ROD is the 1993 report. Information added to this update includes 60 innovative The report is updated annually. This September 1994 issue of the # What Are Alternative and Innovative Treatment Technologies? of a technology or process to soils, sediments, sludge, and solid-Superfund and similar sites are inhibited by lack of data on performance if it has had limited full-scale application. Often, it is the application and cost. In general, a treatment technology is considered innovative are alternative treatment technologies for which applications at and solidification/stabilization. Innovative treatment technologies The most frequently used alternative technologies are incineration Alternative treatment technologies are alternatives to land disposal. > groundwater, however, are considered innovative technologies. established. In situ bioremediation and other in situ treatment of pump-and-treat or ex situ groundwater remedies are considered resembles traditional water treatment technologies; thus, in general, treatment after the water has been
pumped to the surface often matrix waste (such as mining slag) that is innovative. Groundwater technologies to treat soils, sediments, sludge, and solid-matrix waste: This report documents the use of the following innovative treatment - Bioremediation (Ex Situ) - Bioremediation (In Situ) - Chemical treatment - Dechlorination - In situ flushing - Soil vapor extraction In situ vitrification - Soil washing - Solvent extraction - Thermal desorption - Other technologies oily wastes, limestone contained recovery of gasification) barriers, and fuming (e.g., air sparging, bioremediation projects. In addition, the remedial sites that are using in-situ bioremediation for groundwater remediation are included with the in situ ### Sources of Information for This Report reports, and the OSWER Removal Tracking System to compile data of Expertise (Omaha, Nebraska) and the Synopses of Federal Hazardous, Toxic, Radioactive Waste (HTRW) Mandatory Center on emergency response actions. The U.S. Army Corps of Engineers on remedial actions and pollution reports, on-scene coordinators' EPA initially used RODs from individual sites to compile information Edition (EPA/542/B-93/009) were consulted to compile information on projects under other federal programs. EPA then verified and updated the draft information through interviews with remedial project managers (RPM) and on-scene coordinators (OSC) and other contacts for each site. The data concerning project status do not duplicate data in CERCLIS, EPA's Superfund tracking system. This report provides more detailed information specifically on the portion of the remedy pertaining to an innovative technology. In addition, information about technologies and sites identified here might differ from information found in the ROD annual reports and the RODs database. These differences are the result of design changes in the treatment trains used at sites that may or may not require official documentation (that is, a ROD amendment or an explanation of significant differences (ESD)). ## **Definitions of Specific Innovative Treatment Technologies** The innovative treatment technologies reported in the following chapters treat hazardous wastes in very different ways. The following paragraphs define the technologies as they are represented in this document and provide summary statistics on some of the technologies. EX SITU BIOREMEDIATION uses microorganisms to degrade organic contaminants on excavated soil, sludge, and solids. The microorganisms break down the contaminants by using them as a food source. The end products are typically CO₂ and H₂O. Ex situ bioremediation includes slurry-phase bioremediation, in which the soils are mixed in water to form a slurry, and solid phase bioremediation, in which the soils are placed in a tank or building and tilled with water, and nutrients. Variations of the latter process are called land farming or composting. In applications of IN SITU BIOREMEDIATION, nutrients and an oxygen source are pumped under pressure into the soil or aquifer through wells, or they are spread on the surface for infiltration to the contaminated material. In CHEMICAL TREATMENT the contaminants are converted to less hazardous compounds through chemical reactions. The technology is most often used to reduce a contaminant (hexavalent chromium to the trivalent form) or oxidize a contaminant (cyanide, for example). Neutralization is considered an available technology and is not included in this report. DECHLORINATION (another type of chemical treatment) results in the removal or replacement of chlorine atoms bonded to hazardous compounds. For IN SITU FLUSHING, large volumes of water, at times supplemented with treatment compounds, are introduced to soil, waste, or groundwater to flush hazardous contaminants from a site. This technology is predicated on the assumption that the injected water can be isolated effectively within the aquifer and recovered. IN SITU VITRIFICATION treats contaminated soil in place at temperatures of approximately 3000°F (1600°C). Metals are encapsulated in the glass-like structure of the melted silicate compounds. Organics may be treated by combustion. SOIL WASHING is used for two purposes. First, the mechanical action and water (sometimes with additives) physically remove the contaminants from the soil particles. Second, agitation of the soil particles allows the smaller diameter, more highly contaminated fines to separate from the larger soil particles, thus reducing the volume of material requiring further treatment. SOLVENT EXTRACTION operates on the principle that organic contaminants can be solubilized preferentially and removed from the waste in the correct solvent. The solvent used will vary, depending on the waste to be treated. For THERMAL DESORPTION, the waste is heated in a controlled environment to cause organic compounds to volatilize from the waste. The operating temperature for thermal desorption is usually less than 1000°F (550°C). The volatilized contaminants usually require further control or treatment. SOIL VAPOR EXTRACTION removes volatile organic constituents from the soil in place through the use of vapor extraction wells, sometimes combined with air injection wells, to strip and flush the contaminants into the air stream for further treatment. OTHER TECHNOLOGIES include air sparging and the contained recovery of oily wastes (CROW), limestone barriers, and furning gasification technologies. Air sparging involves injecting air into the aquifer to strip or flush volatile contaminants as the air percolates up through the groundwater and is captured by a vapor extraction system. The CROW process displaces oil wastes with steam and hot water. The contaminated oils and groundwater are swept into a more permeable area and are pumped out of the aquifer. Limestone barriers act like chemical slurry walls. Contaminated groundwater comes into contact with the barrier and pH increases. The increase in pH effectively immobilizes dissolved metals and neutralizes the soil. Fuming gasification is a thermal treatment process that purges contaminants from solids and soils as metal fumes and organic vapors. The organic vapors can be burned as fuel and the metal fumes can be recovered and recycled. The following sections contain summary information and analysis on sites at which innovative treatment technologies are being or have been applied. Section 1 covers all Superfund sites implementing an innovative treatment technology under a remedial action. These actions are usually documented in a ROD. Section 2 provides information on Superfund removal action sites. Removals are conducted in response to an immediate threat caused by a release of hazardous substances.* Section 3 covers non-Superfund sites or sites being addressed under other federal programs. Historically, remedial and removal actions operate under different procedural guidelines. The EPA currently is revising the Superfund process under the Superfund Accelerated Cleanup Model (SACM). Under SACM, EPA will adopt a continuous process for assessing site specific conditions and the need for action. Risks will be reduced quickly through early remedial or removal action. THIS PAGE INTENTIONALLY LEFT BLANK ## SECTION 1: SUPERFUND REMEDIAL ACTIONS ### Frequency of Technology Selection ROD Statistics As of April, 1994, there are 1,287 sites on the National Priorities List (NPL), excluding 58 sites deleted from the NPL. 1,207 RODs (including ROD Amendments) had been signed. Most RODs for remedial actions address the source of contamination, such as soil, sludge, sediments, solid-type wastes, and nonaqueous phase liquids (NAPL). These RODs are referred to as "source control" RODs. Other RODs address ground water only or specify that no action is necessary. Figure 1 shows the number of source control RODs compared with the total number of RODs for each fiscal year. An analysis of source control RODs allows a comparison of the frequency of selection of treatment with that of selection of containment or disposal to remedy contamination at sites. Source control RODs are classified by the general type of technology selected: (1) RODs specifying some alternative treatment, (2) RODs specifying containment or disposal only, and (3) RODs specifying other action (such as land use restrictions, monitoring, or relocation). Figure 1 shows the number of source control RODs that fall under each category. RODs in which some treatment is selected may include containment of treatment residuals or of waste from another part of the site. containment or disposal to remediate Superfund sites. In each of the provisions for the treatment of wastes. The increase is most dramatic past six years at least 70 percent of source control RODs contained EPA favor permanent remedies (that is, alternative treatment) over treatment technology for source control (Figure 3). The Superfund Overall, 64 percent of source control RODs have selected at least one Amendments and Reauthorization Act of 1986 (SARA) required that control RODs. Overall, 22 percent of all RODs have included at least one innovative technology, as updated by current project status FY 1993. Figure 4 also illustrates the percentage of RODs selecting selected some treatment (Figure 4). The percentage was 72 percent in treatment for source control, whereas 69 percent of RODs in FY 1988 innovative technologies being considered or used for approximately 29 percent of source through FY 1993, innovative technologies were selected and are still information. Out of a total of 914 source control RODs signed Fifty percent of RODs in FY 1987 selected some ### AND DISPOSAL DECISIONS FOR SOURCE CONTROL SUPERFUND REMEDIAL ACTIONS: TREATMENT FIGURE 4 Note: Data for innovative technologies are derived from Records of Decision (RODs) for fiscal years 1982 – 1993 and anticipated design and construction activities as of June 1994. More than one technology per site may be used. alternative
treatment technologies may have been selected than RODs. In each ROD in which treatment was specified, several technologies selected and used. Most of the remainder of the treatment is by quantifying the number and kinds of treatment information contained in this chapter focuses on technologies, rather Technology Statistics Another way of illustrating the greater use of sites for a total 666 treatment technologies. EPA selected in situ EPA has selected in situ treatment of ground water for 24 remedial 588 source control RODs specifying some treatment. In addition, Through FY 1993, 642 treatment technologies have been selected in treatment of groundwater for three remedial sites in FY 1993. The selection of multiple technologies results from the use of treatment trains or from the treatment of different wastes or areas of the site. For the 588 RODs specifying treatment for source control, Figure 5 lists each type of treatment technology selected and how often it has been selected or used for source control. Figure 5 illustrates that, through FY 1993, 44 percent of the 666 treatment technologies selected were innovative and 56 percent were established. Table A-1, appearing in Appendix A, contains summary information on the innovative treatment technology projects at remedial sites. Table A-2 lists sites using established technologies. Information on the established treatment technologies is based on a review by the Office of Emergency and Remedial Response (OERR) rather than interviews of Regional or State staff. #### SUPERFUND REMEDIAL ACTIONS: SUMMARY OF ALTERNATIVE TREATMENT TECHNOLOGIES Solidification/Stabilization (190) 29% On-Site Incineration (73) 11% Established Technologies (376) 56% Off-Site Incineration (102) 15% SELECTED THROUGH FISCAL YEAR 1993 Other Established (11) 2% (Total Number of Technologies = 666) FIGURE 5 Soil Washing (15) 2% Solvent Extraction (4) < 1% nnovative Technologies # (290) 44% Ex Situ Bioremediation (38) 6% Other Innovative (15) 2% Thermal Desorption (41) 6% In Situ Bioremediation (30) 5% — In Situ Flushing (18) 3% Chemical Treatment (1) < 1% _ Dechlorination (5) < 1% In Situ Vitrification (2) < 1% Soil Vapor Extraction (121) 18% Note: Data are derived from 1982 - 1993 Records of Decision (RODs) for fiscal years and anticipated design and construction activities as of July 1994. More than one technology per site - () Number of times this technology was selected or used. - limestone barriers, and furning gasification "Other" established technologies are soil aeration, in situ flaming, and chemical neutralization. "Other" innovative technologies are air sparging, contained recovery of oily wastes, - Includes 24 in situ groundwater treatment remedies Figure 6 compares the numbers of established and innovative technologies by fiscal year. The figure indicates that more innovative technologies than established technologies have been selected in RODs in fiscal years 1991 and 1993. Figure 7 compares the number of innovative technologies selected with the number of sites. This graph illustrates that some sites are using more than one innovative technology, often together in "treatment trains." The figure also # FIGURE 7 SUPERFUND REMEDIAL ACTIONS: NUMBER OF INNOVATIVE TREATMENT TECHNOLOGIES VERSUS CORRESPONDING RODS Note: Data derived from 1982 – 1993 Records of Decision (ROD) and anticipated design and construction activities as of June 1994. Number of RODs in a fiscal year usually equals the number of sites. ## SUPERFUND REMEDIAL ACTIONS: INNOVATIVE TREATMENT TECHNOLOGIES BY YEAR FIGURE 8 | | | | | | 3 | Flecal Year | • | | | | | |--------------------------|------|------|------|------|------|--------------|-----------|------|----------|----------|----------| | Technology | 1981 | 5961 | 9861 | 1987 | 1986 | 1989 | 1990 | 1991 | 1992 | 1903 | TOTAL | | Soil Vapor Extraction | 0 | 2 | 2 | - | 8 | 5 | 16 | ĸ | 8 | ő | 121 | | Bioremediation (Ex Shu) | - | Ġ | - | 0 | • | \$ | * | | * | . | * | | Thermal Description | 0 | - | _ | ယ | 4 | 2 | 7 | õ | • | • | <u>+</u> | | Bioremediation (In Situ) | 0 | | 0 | ķ | N | ω | ಀ | | * | * | 8 | | Soil Washing | • | ۰ | 0 | 0 | 4 | 2 | 6 | _ | N | 0 | 5 | | in Shu Flushing | Þ | - | - | ٥ | N | ψ | - | * | * | N | # | | Other | 0 | 0 | 0 | 0 | 0 | | 0 | • | • | 8 | 35 | | Decisionation | ø | | 0 | ٥ | 0 | 0 | | N | o | - | Ġ | | Solvent Extraction | 0 | ٥ | 0 | 0 | ٥ | ယ | 0 | - | 0 | ٥ | | | Chemical Treatment | • | ø | ٥ | ٥ | ٥ | o | ٥ | 0 | | 0 | | | Vitrification | ٥ | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | | TOTAL | | * | 5 | • | ¥ | 42 | 8 | 8 | 8 | 53 | 290 | NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994 NOTE: Data derived from Fiscal Year 1982 - 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994 ## Status of Innovative Technology Implementation Many of the innovative technologies documented in this report have been selected in the last several years. The design of such projects typically takes one to three years; therefore, relatively few innovative technologies have been contracted for and installed, and even fewer have been completed (Figure 10). In the next several years, though, many projects now in design should become operational. The summary matrix presents remedial action sites using innovative treatment technologies by status and specific technology. Table E-1 in Appendix E presents detailed information on remedial projects that have been completed. ## FIGURE 10 SUPERFUND REMEDIAL ACTIONS: PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994 | Technology P | Predesign/
In Design | Design Complete/
Being Installed/
Operational | Project
Completed | Total | |----------------------------|-------------------------|---|----------------------|----------------| | Soil Vapor Extraction | 69 | 42 | 10 | 121 | | Thermal Desorption | 26 | 7 | 60 | 41 | | Ex Situ Bioremediation | 24 | 12 | 2 | 38 | | In Situ Bioremediation | ‡ | 14 | 2 | 30 | | Soil Washing | = | ယ | - | 1 5 | | In Situ Flushing | 14 | ω | | 18 | | Dechlorination | ယ | | - | υı | | Solvent Extraction | ယ | - | 0 | 4 | | In Situ Vitrification | - | - | 0 | N | | Chemical Treatment | - | 0 | 0 | _ | | Other Innovative Treatment | nt 12 | ω | 0 | 5 | | Total | 178 (61%) | 87 (30%) | 25 (9%) | 290 | Note: Data are derived from 1982 – 1993 Records of Decision (RODs) and anticipated design and construction activities as of June 1994. # Contaminants Addressed by Innovative Treatment Technologies The data collected for this report form the basis for an analysis of the classes of contaminants treated by each technology type at remedial action sites. Figure 1-11 provides this information, by technology, for three major contaminant groups: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, according to the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. ## FIGURE 11 SUPERFUND REMEDIAL ACTIONS: APPLICATION OF INNOVATIVE TREATMENT TECHNOLOGIES ### **Quantity of Soil Addressed** EPA analyzed the quantity of soil treated at 209 sites using innovative treatment technologies, and for which quantity data were available (Figure 12). This analysis provides an indication of the scale of the projects involved. #### **Treatment Trains** Innovative treatment technologies in this report may be used with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Appendix E presents the data on treatment trains contained within this report. Tables E-4 and E-5 lists the sites at which treatment trains are being used. | FIGURE 12 SUPERFUND REMEDIAL ACTIONS: QUANTITIES OF SOIL TO BE TREATED BY INNOVATIVE TECHNOLOGIES | |---| |---| | Q | 1,000 - 45,000 | |--------|-----------------| | | 3,000 | | 7- | 1,500 - 5,000 | | റ് | 700 - 48,000 | | Ų. | 1,800 - 130,000 | | _ | 1,000 - 208,000 | | \sim | 9,000 - 85,000 | | w | 1,800 - 200,000 | | \sim | 5,000 - 250,000 | | _ | 60 - 2,000,000 | | 19 | 5,200 - 650,000 | | | Range | ## SECTION 2: SUPERFUND REMOVAL ACTIONS Superfund removal actions are conducted in response to an immediate threat caused by a release of hazardous substances. Removal action decisions are documented in an action memorandum. To date, innovative treatment technologies have been used in relatively few removal actions. The innovative technologies addressed in this report have been used 31 times in 26 removal actions (Figure 13). In addition, infrared incineration, no longer considered innovative, was first used at two removal actions. Many removals involve small quantities of waste or immediate threats requiring quick action to alleviate the hazard. Often, such activities do not lend themselves to on-site treatment approaches. In addition, SARA does not prescribe the same preference for innovative treatment for removals that it does for remedial actions. EPA would like to increase the use of innovative treatment methods to address removal problems. One of the seven initiatives set forth in the EPA directive described in the foreword concerns removal actions. It is expected that innovative treatment technologies will be used more often in the future, for larger, and less time-critical removal actions. Table B-1 in Appendix B provides detailed
information for each application of an innovative technology at a removal site. The summary matrix presents summaries by EPA Region and status for all applications of innovative technologies at removal sites. ### Frequency of Technology Selection Figure 13 lists each type of innovative treatment technology and indicates how often that technology has been selected as a remedy for removal actions. Figure 13 illustrates that chemical treatment was selected most often and represented 23 percent of all applications of innovative treatment technologies at removal sites. Bioremediation (ex situ) was chosen six times and represented 19 percent of all applications of innovative treatment technologies at removal sites. ## Status of Innovative Technology Implementation Figure 14 indicates the status of innovative treatment technologies that are being applied at removal action sites. Since removals are responses to an immediate threat and often involve smaller quantities of hazardous wastes than remedials, the implementation of the technology may progress faster at a removal site than at a remedial site. The figure indicates that a large percentage, 58 percent, of removal projects involving innovative treatment technologies have been completed. The Summary Matrix provides information on removal action sites using innovative treatment technologies by status and specific technology. Table E-2 in Appendix E provides detailed information on removal projects that have been completed. PROJECT STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* SUPERFUND REMOVAL ACTIONS. FIGURE 14 | Technology | Predesign/
In Design | Design Complete/ Being Installed/Operational | Project
Completed | Total | |----------------------------|-------------------------|--|----------------------|-------| | Soil Vapor Extraction | 0 | _ | သ | 4 | | Thermal Desorption | 0 | -4 | - | 2 | | Ex Situ Bioremediation | - | 2 | ω | 6 | | In Situ Bioremediation # | 0 | | ω | 4 | | Soil Washing | 0 | - | - | 2 | | In Situ Flushing | 0 | 0 | 0 | 0 | | Dechlorination | 0 | 0 | N | 8 | | Solvent Extraction | 0 | 0 | N | N | | In Situ Vitrification | 0 | | 0 | | | Other Innovative Treatment | 0 | -4 | 0 | | | Chemical Treatment | 0 | - | 6 | 7 | | TOTAL | 1 (3%) | 9 (29%) | 21 (68%) | 31 | Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region Includes one in situ groundwater treatment. # Contaminants Addressed by Innovative Treatment Technologies Figure 15 provides information, by technology, for three major contaminant groups treated at removal action sites: volatile organic compounds (VOC), semivolatile organic compounds (SVOC), and metals. For this report, compounds are categorized as VOCs or SVOCs, using the lists provided in EPA's SW-846 Test Methods 8240 and 8270, respectively. #### **Treatment Trains** Innovative treatment technologies in this report may be used together with established or other innovative treatment technologies in treatment trains. Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. Table E-5 in Appendix E lists the sites at which such treatment trains are being used. ## SECTION 3: ACTIONS UNDER OTHER FEDERAL PROGRAMS This chapter contains available information on projects conducted under other federal programs that are not part of the Superfund program (non-Superfund sites). Many of these projects take place at DoD and DOE facilities. Many of the DoD projects are funded by the Defense Environmental Restoration Program (DERP), which includes the installation restoration program (IRP) and the formerly used defense sites (FUDS) program in DoD. These sites were identified through various sources of information, including discussions with DoD and DOE personnel. However, this list of sites should not be considered comprehensive. This chapter contains information on the application of innovative technologies at 28 non-Superfund sites. Figure 16 lists each type of innovative treatment technology and the number of times it has been selected as a remedy at a non-Superfund site. Figure 17 indicates the status of innovative technologies being applied at non-Superfund sites. The Summary Matrix provides information on each application by status and EPA Region. Table C-1 in Appendix C provides detailed information on each application. Table E-3 in Appendix E lists details on completed applications. Number of times this technology was selected or used "Other" innovative technologies are air sparging and contained recovery of oily wastes inclusion in situ groundwater treatment remedies FIGURE 17 SAMPLE OF PROJECTS UNDER OTHER FEDERAL PROGRAMS: STATUS OF INNOVATIVE TREATMENT TECHNOLOGIES AS OF SEPTEMBER 1994* | Technology | Predesign/
In Design | Design Complete/ Being Installed/Operational | Project
Completed | Total | |----------------------------|-------------------------|--|----------------------|----------| | Soil Vapor Extraction | Ŋ | 51 | | = | | Thermal Desorption | 0 | 0 | 0 | 0 | | Ex Situ Bioremediation | 0 | N | ω | CI | | In Situ Bioremediation# | 0 | თ | N | ∞ | | Soil Washing | 0 | | -4 | 2 | | In Situ Flushing | 0 | 0 | 0 | 0 | | Dechlorination | 0 | | 0 | | | Solvent Extraction | 0 | 0 | 0 | 0 | | In Situ Vitrification | 0 | 0 | 0 | 0 | | Other Innovative Treatment | 0 | | 0 | - | | Chemical Treatment | 0 | 0 | 0 | 0 | | TOTAL | 5 (18%) | 16 (57%) | 7 (25%) | 28 | ^{*} Data derived from a survey of EPA Superfund Removal Branch Chiefs and On-Scene Coordinators for each Region. Also includes in situ groundwater treatment. | Remedial Remedial | PD | Picillo Farm Site, Ki | | |-------------------|--
---|--| | Remedial | PD | איייים מיי. או | - | | | | Stamina Mills, RI | 1 | | Remedial | PD | Tibbetts Road, NH | _ | | Remedial | С | Ottati & Goss, NH | | | Remedial | D | Tinkham Garage (OU 1), NH | - | | Remedial | I | South Municipal Water Supply Well, NH | _ | | Remedial | 0 | Mottolo Pig Farm, NH | - | | Remedial | С | McKin, ME | _ | | Remedial | Ð | O'Connor, ME | - | | Remedial | D | Union Chemical Co., OU 1, ME | _ | | Remedial • | I | Hocomonco Pond, ESD, MA | _ | | Remedial | 0 | Wells G&H OU 1, MA | | | Remedial | 0 | Groveland Wells, MA | _ | | Remedial | C | Cannon Engineering/Bridgewater, MA | -
 - | | Remedial | D | Norwood PCBs, MA | _ | | Remedial | 0 | Re-Solve, MA | - | | Remedial | 0 | Iron Horse Park, MA | | | Remedial | ı | Silresim, MA | - | | Remedial | PB | Linemaster Switch Corporation, CT | | | Remedial | D | Kellogg-Dearing Well Field, CT | - | | Action Sio Bio | Status | Site Name, State | Region | | Circulation (in | | | | | | | Region 1 | | | | | | | | | | | | | | Pion Biological Control of the Contr | Action Higher History Control of | Region I Site Name, State Kellogg-Deering Well Field, CT Linemaster Switch Corporation, CT PD Remedial Silresim, MA Iron Horse Park, MA Re-Solve, MA Norwood PCBs, MA Cannon Engineering/Bridgewater, MA Cannon Engineering/Bridgewater, MA Reserved | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; d = Fuming gasification e = insitu oxidation | 2 | Region | | | | | |--|---|----------------------------------|---|----------------------------|---------------------------------|-----------------------|----------------------------|------------------------------------|---------------------------|---------------------------|--------------------------------------|-----------------|---|---------------------|--------------------------------------|----------------------------|--------------------|--------------------------|--------------------------------|---------------------------------------|------------------|--
--|----------|-----------------| | Applied Environmental Services, OU 1, NY | Mattiace Petrochemicals Company, OU 1, NY | Circuitron Corporation, OU 1, NY | Naval Air Engineering Center, OU 23, NJ | Universal Oil Products, NJ | Zschiegner Refining Company, NJ | Vineland Chemical, NJ | Industrial Latex, OU 1, NJ | Lipari Landfill Marsh Sediment, NJ | Garden State Cleaners, NJ | South Jersey Clothing, NJ | Waldick Aerospace Devices (OU 1), NJ | Reich Farms, NJ | Metaltec/Aerosystems, OU 1 - Soil Treatment, NJ | King of Prussia, NJ | Vineland Chemical, OU 1 and OU 2, NJ | Lipari Landfill (OU 2), NJ | Myers Property, NJ | FAA Technical Center, NJ | Swope Oil & Chem Co., OU 2, NJ | A O Polymer, Soil treatment phase, NJ | Site Name, State | | Tuo gon | Region 2 | | | DΛ | PD | D | D | D | С | င | PD | I | 0 | D | C | D | 0 | С | D | 0 | D | Ι | D | D | Status | | | | | | Remedial | Remedial | Remedial | Remedial | Remedial | Removal | Removal | Remedial Action | | | | | | • | | | | | | | | | | | | | | | | | | • | | | 4 | | | | | | | | | | | | _ | | | | | | | | _ | | | | | | - | Big | enediation
Chediation | | | | | | | | | | • | • | | | | | | | | _ | | | • | | | | S | Perialistical Property of the Control Contro | The State of S | | | | | - | | | | | | | | | | | | | | • | • | | | | | 2 | Sin Sin | Alco. | <i>\</i> | 40. X | | \ | | | • | • | • | • | | | | | | • | • | | | | | | | | • | • | • | So | Sin Sinific | | | | | | | | | _ | | | | | | | _ | | | • | • | | • | _ | | | Sol | Viblica
Vibrica
Vibrio | Tion | | Techno | | | _ | | lacksquare | | | _ | - | • | - | _ | | • | | | | H | | _ | | - | | Ø 1 | | \ | Technology Type | | • | _ | | | | | | | | - | | | | | | | | | | | | 13 | Con Entaci | ig 1 | | pe | | а | Ot. | STREET SECTIONS | Rion | | | Status: PD = Prodesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | 2 | Region | | | | | |------------------|------------------------------|-----------------------|--|--------------------------|---|---|---|--|--------------------|--|-----------------------------|---------------------------------|-----------------|--------------------------------------|-------------------------|-------------------------|----------------------------|------------------------------|-----------------------------------|------------------|--------------------------------------|---------|----------|-----------------| | Janssen Inc., PR | Upjohn Manufacturing Co., PR | GE Wiring Devices, PR | Reynolds Metals Co. Study Area Site, (RMC), NY | GCL Tie and Treating, NY | Pasley Solvents and Chemicals, Inc., NY | General Motors/Central Foundry Div., OU 1, NY | General Motors/Central Foundry Div., OU 2, NY | Applied Environmental Services (Groundwater), NY | Solvent Savers, NY | Claremont Polychemical - Soil Remedy, NY | Vestal Water Supply 1-1, NY | SMS Instruments (Deer Park), NY | Sarney Farm, NY | Fulton Terminals, Soil Treatment, NY | American Thermostat, NY | Byron Barrel & Drum, NY | Wide Beach Development, NY | Signo Trading/Mt. Vernon, NY | Genzale Plating Company, OU 1, NY | Site Name, State | | | Region 2 | | | I | С | D | D | D | D | D | D | I | PD | D | ם | С | ם | D | 0 | PD | С | С | ם | Status | | | | | | Remedial | Remedial | Remedial | Remedial | Removal | Remedial Removal | Remedial | Action | | | | | | | | | | | | | | • | | | | | | | | | | | | 8 | | | | | | | | | | • | | • | • | | | | | | | | | | | | | Sic Sic | Penedia ito | S | Oddiano,
Penediano,
Inical Inc | (i) s | is \ | | | | | | | | | | | | | | | | | | _ | | • | • | | • | 1. Co. 1 | 14. | | | | - | | | | | • | | | | | _ | | | | | _ | • | | | | 10 | Horitagio
Sin Sin | TO CH | | | | • | • | | | | • | | | - | | | • | • | | | | | | | • | The state of | Si Tilega | | | | | | | • | | | | | | | | | | | | | | | | | | L Sy | L Adig | | | Τœ | 13 | A. T | (S.) | ` | Technology Type | | | | | • | | | | | | • | • | | | • | • | • | | | | | | G 1 | | • | у Турс | CAN CON | Tital Res | HORIZON | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | 3 | 3
R | 3 L | 3 D | 3
A | 3
S | 3 A | 3 | 3
S | 3 B | 3 8 | 3 T | 3 B | 3
T | 3 L | 3 B | 3 U | 3 | 3 C | 3 D | Region | | | | |-----------------------------------|--------------|------------------------------|---|------------------|------------------------------|--|--------------------------------|-------------------------------------|---|-------------|-------------------------|--------------------------|------------------|-------------------------|------------|-------------------------------------|----------------------------------|--------------------|------------------------------|------------------
--|------------|-----------------| | Ordnance Works Disposal Areas, WV | Rentokil, VA | Langley AFB, IRP Site 28, VA | Defense General Supply Center, OU 5, VA | Avtex Fibers, VA | Saunders Supply Co, OU 1, VA | Arrowhead Associates/Scovill, OU 1, VA | William Dick Lagoons, OU 3, PA | Saegertown Industrial Area Site, PA | Brown's Battery Breaking Site, OU 2, PA | Raymark, PA | Tonolli Corporation, PA | Brodhead Creek, OU 1, PA | Tyson's Dump, PA | Lord-Shope Landfill, PA | Bendix, PA | U.S.A. Letterkenny SE Area, OU1, PA | Whitmoyer Laboratories, OU 3, PA | Cryochem, OU 3, PA | Delaware Sand and Gravel, DE | Site Name, State | | Region 3 | | | ם | D | I | С | С | D | PB | PD | D | 뫈 | 0 | 뫈 | I | 0 | DΛ | PD | 0 | D | D | PD | Status | | | | | Remedial | Remedial | Other | Remedial | Removal | Remedial Action | • | Si, | | | | | • | | | | | | | _ | | | _ | | | | | | | • | _ | | Sic. | Pelicialist Control of the o | | | | | | | | • | | _ | _ | _ | | | _ | _ | | | | _ | _ | _ | | S | Teligion (in a line) in a line i | | X | | | | | | \vdash | - | _ | | _ | | - | | \vdash | | | | | _ | | | 2 | Cal Tiesto | | | | | | _ | | | | | | | | | | | | | | | | | | 1 | Vis. \ 3 | | | | | | • | • | | | • | | • | | • | | | • | • | • | | | • | • | Th. | A The ling I LANGE TO SERVE | 3 | Vinification States | // | Je
S | 13 | A Tha | ' ' | Technology Type | | | • | | | | • | | • | | | | | | | | | • | | | | | Q | • | y Type | | | | | | | | | | • 2 | ⊕b,d | | • | ● c | | | | | | | | 13 | And Gaction | // | 7 | AT EARTHCIGHT SET OF LOCAL PROPERTY PRO | | | Status: PD = Predesign; D = Design; D/l = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | Region Site Name, State Status Action April 1975 CA 137 | | | | |--|--|--|---------------------| | Region 4 Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Peak Oil/Bay Drums OU 1, FL Robins AFB, Landfill / Sludge Lagoon, OU 1, GA Backet Creek Surface Impoundment, GA Backet Creek Surface Impoundment, GA Mathis Brothers - S. Marble Top Road Landfill, GA Smith's Farm Brooks, OU 1, KY Southeastern Wood Preserving, MS Charles Macon Lagoon, (OU 1 & OU 4), NC PD Remedial D Remedial D Remedial Remodial Aberdeen Pesticide Dumps, (OU 1 & OU 4), NC D Remedial D Remedial D Remedial D Remedial Remedial Remodial | | • | • | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Dubose Oil Products, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Fits (amended ROD), FL Dublingsworth Solderless, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Fits (amended ROD), FL DD Remedial Robins AFB, Landfill / Sludge Lagoon, OU 1, GA Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Ceneral Refining, GA General Refining, GA Cc Removal Basket Creek Surface Impoundment, GA Mathis Brothers - S. Marble Top Road Landfill, GA D Remedial Smith's Fam Brooks, OU 1, KY Southeastern Wood Preserving, MS Cc Removal Southeastern Wood Preserving, MS Cc Removal Abendeen Pesticide Dumps, (OU 1 & OU 4), NC D Remedial Abendeen Pesticide Dumps, (OU 1 & OU 4), NC D Remedial | | | • | | Region 4 Site Name, State Site Name, State Site
Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Dubose Oil Products, FL Cabot Carbon/Koppers, FL Dubose Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL D Remedial Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL D Cabot Carbon/Koppers, FL D Cabot Carbon/Koppers, FL D Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL D Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL D Remedial O Remedial O Remedial O Remedial O Remedial O Remedial O Removal Basket Creek Surface Impoundment, GA Basket Creek Surface Impoundment, GA Mathis Brothers - S. Marbte Top Road Landfill, GA D Remedial O Remedial O Remedial O Charles Macon Lagoon, Lagoon #7, OU 1, NC D Remedial O Remedial O Charles Macon Lagoon, Lagoon #7, OU 1, NC D Remedial O Abendeen Pesticide Dumps, (OU 1 & OU 4), NC PD Remedial O Charles Macon Lagoon, Lagoon #7, OU 1, NC D Remedial O Remedial | • | • | | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Ceneral Refining, GA General Refining, GA General Refining, GA General Refining, GA Cabot Creek Surface Impoundment, GA Mathis Brothers - S. Marble Top Road Landfill, GA Smith's Farm Brooks, OU 1, AS Smith's Farm Brooks, OU 1, AS Cabot Carbon/Koppers, FL Carb | | | | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Hollingsworth Solderless, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Robins AFB, Landfill / Sludge Lagoon, OU 1, GA Robins AFB, Landfill / Sludge Lagoon, OU 1, GA Basket Creek Surface Impoundment, GA Cabot Creek Surface Impoundment, GA Mathis Brothers - S. Marble Top Road Landfill, GA Smith's Farm Brooks, OU 1, KY Cabot Creeving, MS Cabot Carbon/Koppers, FL | | • | • | | Region 4 Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Whitebouse Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Robins AFB, Landfüll / Sludge Lagoon, OU 1, GA Basket Creek Surface Impoundment, GA Mathis Brothers - S. Marble Top Road Landfill, GA Memedial C Remedial | | • | • | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL Cabot Carbon/Solderless, | | | • | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Hollingsworth Solderless, FL Peak Oil/Bay Drums OU 1, FL Robins AFB, Landfill / Sludge Lagoon, OU 1, GA Basket Creek Surface Impoundment, GA C Removal Removal Removal Cabot Carbon/A Removal C Removal C Removal C Removal | | | | | Region 4 Site Name, State Status Status Action PD Remedial Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Robins AFB, Landfill / Sludge Lagoon, OU 1, GA General Refining, GA C Status Action PD Remedial O | | • | • | | Region 4 Status Action Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Cholimgsworth Solderless, FL Peak Oil/Bay Drums OU 1, FL Peak Oil/Bay Drums OU 1, FL Politic Remedial Robins AFB, Landfill / Sludge Lagoon, OU 1, GA PD Remedial | | | • | | Region 4 Site Name, State Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL PD Remedial C Remedial O | | • | • | | Region 4 Site Name, State Status Status Action Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL PD Remedial Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Whitehouse Waste Oil Pits (amended ROD), FL Hollingsworth Solderless, FL C Remedial | • | • | • | | Region 4 Site Name, State Ciba-Geigy (MacIntosh Plant) OU 2, AL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Cabot Carbon/Koppers, FL Cabot Carbon/Koppers, FL Whitebouse Waste Oil Pits (amended ROD), FL D Remedial | | • | • | | Region 4 Status Action Status Action Ciba-Geigy (MacIntosh Plant) OU 2, AL PD Remedial Ciba-Geigy (MacIntosh Plant) OU 4, AL PD Remedial Brown Wood Preserving, FL C Remedial C Remedial C C C Remedial C C C Remedial C C C C Remedial R Remedial C C C R R R R R R R R R R R R R R R R | | • | • | | Region 4 Region 4 Status Action Addresserving, FL Ciba-Geigy (MacIntosh Plant) OU 2, AL Brown Wood Preserving, FL Ciba-Geigy (MacIntosh Plant) OU 4, AL Brown Wood Preserving, FL Ciba-Geigy (MacIntosh Plant) OU 4, AL Ciba-Geigy (MacIntosh Plant) OU 5, AL Ciba-Geigy (MacIntosh Plant) OU 6, | | • | • | | Region 4 Region 4 Status Action Status Ciba-Geigy (MacIntosh Plant) OU 2, AL PD Remedial Ciba-Geigy (MacIntosh Plant) OU 4, AL PD Remedial C Remedial C Remedial C Remedial C | | | | | Region 4 Region 4 Status Action Aignification Ciba-Geigy (MacIntosh Plant) OU 2, AL PD Remedial Ciba-Geigy (MacIntosh Plant) OU 4, AL PD Remedial | | | | | Region 4 Region 4 Site Name, State Site Name, State Site Name, State Status PD Remedial | • | • | • | | Region 4 Site Name, State Status Status Status | • | • | • | | | 10 10 to | 2 4 4 4 5 SQ | 1 4 4 4 50 SO | | | Y CA / Treation of the Children Childre | Kai jiga
Gilotialion
Sin Phalific
Sin Sinific | SE TE | | | then ! | S Site Street | S Situation I stood | | | | | | | | | Teci | Technology Type | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | | 4 A | 4
P | 4 H | 4 R | 4
C | 4 | 4 | 4 | 4 | 4 8 | 4 H | 4
U | 4
F | Region | | |--|--|------------------------------|---------------------|------------------------|-----------------------------------|---|--|-------------|-----------------------|----------------------|---------------------|---|-------------------------|------------------
--| | The second secon | Arlington Blending & Packaging Co., OU 1, TN | Para-Chem Southern, Inc., SC | Helena Chemical, SC | Rochester Property, SC | CSX McCormick Derailment Site, SC | Savannah River DOE, M Area Settling Basin, SC | Sangamo/Twelve-Mile/Hartwell PCB, OU 1, SC | Wamchem, SC | Medley Farm, OU 1, SC | SCRDI Bluff Road, SC | Hinson Chemical, SC | USMC Camp Lejeune Military Base, OU 2, NC | PCX-Washington Site, NC | Site Name, State | Region 4 | | 7 | D | PD | D | PD | C | 0 | D | С | DЛ | D | С | D | I | Status | | | Damadial | Remedial | Remedial | Remedial | Remedial | Removal | Other | Remedial | Remedial | Remedial | Remedial | Removal | Remedial | Removal | Action | | | | | | | | • | • | | | | | | | | \$ | | | - | | • | • | | | _ | | | | | | | | Bio | Alleria de la seria dela seria dela seria dela seria dela seria de la seria dela se | | | | | | | | _ | | | | | | | | 0 | | | | | | | | | | | | | | | | | 34 | | | | | | | | | | | | | | | | | | 3 | | • | | | | | • | • | _ | | • | • | • | • | | Sa | Techi
City Linite Bion | | | | | | | | | _ | - | | | | | | 13 | 2\3 \ \5 | | | • | | | | | _ | • | • | | | | | • | | | | | | | | • | | • | | | | | | | | 13 | Phase dig | | | | | | | | - | | | | | | | | CHI | AT EXPRISION SEE STATE OF SECONS OF SEE STATE OF SECONS OF SECONS OF SECONS OF SECONS OF SECONS | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | 5 | 5 | S | v | v | S | 5 | م | s | s | 5 | 5 | s | 5 | 5 | 5 | 5 | 5 | v | 5 | 5 | Region | | |--|-----------------------------|---------------------------|------------------|----------------------------------|-----------------------|-----------------------|-----------------------------|---------------------------|--------------------------------|--------------|--------------------------------------|-----------------------------|-------------|----------------------|-----------------------|----------------------------|---|---|---|-----------------------|------------------|--| | Anderson Development (ROD Amendment), MI | Verona Well Field, OU 2, MI | ThermoChem, Inc. OU 1, MI | Chem Central, MI | Sturgis Municipal Well Field, MI | Carter Industries, MI | Ninth Avenue Dump, IN | Reilly Tar and Chemical, IN | Indiana Wood Treating, IN | American Chemical Services, IN | MIDCO II, IN | Seymour Recycling (Ground water), IN | Wayne Waste Reclamation, IN | MIDCO I, IN | Fisher Calo Chem, IN | Seymour Recycling, IN | Main Street Well Field, IN | Enviro. Cons. and Chem. (ROD Amend), IN | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL | Outboard Marine/Waukegan Harbor, OU 3, IL | Galesburg/Koppers, IL | Site Name, State | Region 5 | | C | 0 | D | D | PD | D | С | PD | 0 | PD | PD | 0 | DЛ | PD | D | С | D | D | D | C | D | Status | | | Remedial Removal | Remedial Action | | | | | | | | | | | | | | • | | | | • | | | | | | \$ | | | | | | | | | | | • | | | | | | | | | | | | • | A. | • | | | | | | | | | | | | | | | To. | Silver State | 10 | | | | | | • | • | | | | | • | • | | • | • | • | • | | • | • | | | 1 E | 13 | WY TO NO. | | • | | | | | • | | • | | • | _ | | | | | | | | • | • | 13 | Ellas Paris | AT EATRACION DE SERVICION SE | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | 5 | s | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | Region | | |---------------------------|---------------------------|--------------------------------------|--|---------------------------------------|---|---|--------------------------------|----------------------------|----------------------|------------------------|-------------------------|--|--------------------|--|-------------------------------|----------------------------------|---------------------------------------|-------------------------|---|---------------------|------------------
--| | Zanesville Well Field, OH | Zanesville Well Field, OH | Allied Chem & Ironton Coke, OU 2, OH | Long Prairie Groundwater Contamination, MN | Twin Cities Army Ammunition Plant, MN | Joslyn Manufacturing and Supply Co., MN | Burlington Northern RR Tie Treating Plant, MN | Ott/Story/Cordova Chemical, MI | Duell-Gardner Landfill, MI | Peerless Plating, MI | Clare Water Supply, MI | Electro-Voice, OU 1, MI | Saginaw Bay Confined Disposal Facility, MI | Rasmussen Dump, MI | Verona Well Field (T. Solv/Raymond Rd), MI | Springfield Township Dump, MI | Kysor of Cadillac Industrial, MI | Parsons Chemical (ETM Enterprise), MI | Ionia City Landfill, MI | PBM Enterprises (Van Dusen Airport Service), MI | Cliffs/Dow Dump, MI | Site Name, State | Region 5 | | ם | PD | D | DΛ | 0 | 0 | 0 | D | PD | D | PD | PD | С | D | C | מ | D | С | D | С | D | Status | | | Remedial Other | Remedial | Remedial | Remedial | Remedial | Removal | Remedial | Removal | Remedial | Action | | | | | • | | | | | | | | | | | | | | | | | | | \$ | | | | | • | | | • | • | | | | | | | | | | | | | | • | NO A | • | | 789 | • | | | | | | | | 1 | • | • | | | 1 | % \ ♥ \ | | • | | | • | | | | | | • | • | • | | | • | • | • | | | | | S | Techi
Sin Lings | | | • | | | • | | | | | | | | • | | | | | | | | | S | Technology 7 | 13 | 4 \ To \ \ 10 | | | | | | | | | • | • | | | | | | | | | | | | | | S. \ \ 1.7 🛭 | | | | • f | | | | | | | | | | | | | | | Colonial in | | | | | Add to the state of o | To State Control of the t | Status: PD = Predesign; D = Design; D/l = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification Site Status and Technology Summary Matrix Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | D Remedial | American Creosote Works, Inc. (Winnfield), LA Alchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX South Cavalcade Street, TX Koppers/Texarkana, TX United Creosoting, TX Kelly AFB, Site 1100, TX Matagorda Island AF Range, TX | |--|--| | Remedial | American Creosote Works, Inc. (Winnfield), I.A Akchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX South Cavalcade Street, TX Koppers/Texarlcana, TX United Creosoting, TX Kelly AFB, Site 1100, TX | | Remodial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklaboma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX South Cavalcade Street, TX Koppers/Texarkana, TX United Creosoting, TX | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Akchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX South Cavalcade Street, TX Koppers/Texarkana, TX | | Remedial | American Creosote Works, Inc. (Winnfield), LA Akchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklaboma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX South Cavalcade Street, TX | | Remedial •< |
American Creosote Works, Inc. (Winnfield), LA Alchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX French Limited, TX | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Akchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklaboma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX Sheridan Disposal Services, TX | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX North Cavalcade Street, TX | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Akchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK Petro-Chemical Systems, Inc., OU 2, TX | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK Oklahoma Refining Co., OK | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM Traband Warehouse, OK | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM Holloman AFB, BX Service Station, NM | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM Holloman AFB, Main POL Area, NM | | Remedial •< | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM Prewitt Abandoned Refinery, NM | | Remedial Removal Remedial Remedial Remedial Remedial Remedial | American Creosote Works, Inc. (Winnfield), LA Atchison/Santa Fe/Clovis, NM | | Remedial Removal Remedial Remedial Remedial | American Creosote Works, Inc. (Winnfield), LA | | Remedial Removal Remedial Remedial | ray ou or chellical services, LA | | Remedial Remedial Remedial | | | Remedial Remedial | 6 Old Inger Oil Refinery, LA O | | Remotial • • | 6 Popile, AR | | Remedial | 6 MacMillan Ring Free Oil Company, AR I | | | 6 Arkwood, AR D | | Action die die Charles de la die | Region Site Name, State Status | | Continued States | | | The allie dicate to the | | | Tion tion | / Kegion o | | | D | | Technology Type | | | | | Status: PD = Prodesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification Site Status and Technology Summary Matrix Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification Status: PD = Predesign; D = Design; D/I = Designed but not installed; <math>I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs | 8 | ∞ | 80 | 8 | ∞ | ∞ | 8 | ∞ | ∞ | ∞ | 80 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | Region | | | |--|--|----------------------|--|-------------------------------------|----------------------|------------------------|------------------------|--------------------------------------|--|----------------------------------|---|----------------|--|--|----------------------------------|--------------------------------|---------------------------------|------------------|--|-----------------| | Mystery Bridge Road/Highway 20, OU 2, WY | Utah Power and Light/American Barrel, UT | Wasatch Chemical, UT | Montana Pole/Treating (Ground water), MT | Montana Pole and Treating Plant, MT | Mouat Industries, MT | Idaho Pole Company, MT | Former Glasgow AFB, MT | Libby Ground Water Contamination, MT | Burlington Northern (Somers Plant), MT | Broderick Wood Products OU 2, CO | Rocky Flats OU 2, Interim Remedial Action, CO | Ft. Carson, CO | Rocky Mtn Arsenal OU 18, interim resp., CO | Martin Marietta (Denver Aerospace), CO | Chemical Sales Company, OU 1, CO | Sand Creek Industrial OU 1, CO | Sand Creek Industrial, OU 5, CO | Site Name, State | Region 8 | | | 0 | PD | С | P | P | 0 | D | - | 0 | 0 | 0 | 0 | 0 | С | D | D | 0 | 0 | Status | | | | Removal | Remedial | Remedial | Remedial | Remedial | Removal | Remedial | Other | Remedial | Remedial | Remedial | Remedial | Other | Remedial | Remedial | Remedial | Remedial | Remedial | Action | | | | | | | • | • | | • | | • | • | • | | • | | | | | | 8 | | | | | | • | | • | | • | • | • | • | • | | | | | | | | A; | elicii io (in sino) | | | | | L | _ | L | • | L | | | | | | | | _ | | | | Q | Tetja jog (in sino)
En ica jog (es sino)
Cajo (es sino) | | | | | | _ | _ | | _ | | _ | _ | | | | | | | | | 4 | Cligitod Casing Cligation of the Control Con | | | | | | | • | | • | _ | _ | | L | _ | L | _ | _ | L | | | To | Calification Single | | | • | • | | _ | _ | | | _ | | - | _ | • | • | • | • | • | • | | To. | Si Taga | | | | | | _ | _ | | | _ | | - | | | | | | | | | 150 | I Alican |
٩ | | | | | | | | | | | _ | | | | | | | | | 13 | W 18 | Fechnology Type | | | | <u> </u> | - | _ | | | | | - | | | | | • | | | • | | G | Sy Typ | | • a | | | | | | | | | | | | | | | | | | 13 | Anal Traction | \\ " | A Ciracion A Ciracion A Ciracion | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Fuming gasification | • | | | | • | | Removal | ٥ | Poly-Carb. NV | 9 | |---|-----------------|-----------|----------|------------------|-----|----------|--------|--|----------| | | | | • | | | Other | 0 | U. S. Public Works Center, Guam, GU | 9 | | D | • | | | | | Remedial | С | Intersil, CA | 9 | | | • | | | | • | Remedial | PD | Hexcel, CA | 9 | | | • | | | | | Remedial | PD | Lorentz Barrel and Drum (OU 1), CA | 9 | | | • | | | | | Remedial | 0 | Sacramento Army Depot (Burn Pits OU), CA | 9 | | | • | | | | | Remedial | D | Lawrence Livermore National Laboratory, CA | 9 | | 0000000000 | • | | | _ | | Remedial | 0 | Signetics (AMD 901) (TRW), Signetics OU, CA | 9 | | | | | | • | _ | Remedial | D | Jasco Chemical Co., CA | 9 | | | • | | | | | Remedial | PD | Purity Oil Sales OU 2, CA | 9 | | | | | | • | | Other | С | Ft. Ord Marina, Fritzche AAF Fire Drill Area, CA | 9 | | | • | | | | - | Other | 0 | McClellan AFB OUD, CA | و | | | • | | | | • | Other | D | Seal Beach Navy Weapons Station IR Site 14, CA | 9 | | | | | | • | | Other | С | USMC, Mtn. Warfare Center, Bridgeport, CA | 9 | | | • | | | | | Remedial | С | Sacramento Army Depot, Tank 2 OU, CA | 9 | | | • | | | | | Remedial | D | Pacific Coast Pipeline, CA | 9 | | | • | | | | | Remedial | 0 | Van Waters and Rogers, CA | 9 | | | • | | | | | Remedial | 0 | Monolithic Memories/AMD - Arques, SU 2, CA | 9 | | | • | | | | | Remedial | 1 | Watkins-Johnson, CA | ٥ | | | • | | | | | Remedial | Ø | Raytheon, Mountain View, CA | 9 | | | • | | | | | Remedial | 0 | Intersil/Siemens, CA | 9 | | | • | | | | | Remedial | ם | Intel, Mountain View, CA | ٥ | | So | Sol | Jo. | • | Sio. | Big | Action | Status | Site Name, State | Region | | A SIN SACON | Kill Site Labor | Sig. A | · V | CHedia
CHedia | | | | | | | THE | Ding Vice | Tion | | ion (i | | | | | . | | ión I | | \$ \
\ | Sin | | | | | Kegion 9 | | | | | | | | | | | | | | Technology Type | | | <u>\</u> | | | | | | | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d = Furning gasification | * | ŏ | 10 | <u>1</u> 0 | 10 | ō | 5 | 10 | 10 | 10 | ō | ō | ō | 10 | 10 | Region | | |--|---|--|--|-------------------------------------|-------------------|----------------------|---|---|--|-----------------|----------------------------|---------------------------------------|----------------------------|--------------------|------------------|--| | Naval Communication Station, Scottland | Bonneville Power Administration, OU A, WA | Fort Lewis Mil Res. Lf 4 & Sol. Refined Coal, WA | Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA | Fairchild AFB OU 1 Craig Rd LF., WA | Harbor Island, WA | Drexler - RAMCOR, WA | Naval Submarine Base, Bangor Site A, OU 1, WA | Commencement Bay/S. Tacoma Well 12A, WA | Umatilla Army Depot Activity, Soil Op Unit, OR | Gould, Inc., OR | United Chrome Products, OR | Union Pacific Railroad Sludge Pit, ID | Eielson Air Force Base, AK | Ft. Wainwright, AK | Site Name, State | Region 10 | | С | I | D | D | D | PD | C | - | 0 | DΛ | 0 | 0 | PD | 0 | 0 | Status | | | Remedial | Remedial | Remedial | Remedial | Remedial | Remedial | Removal | Remedial Other | Action | | | • | | | • | | | | | | | | | | • | | 4 | | | | • | | | | | _ | | | • | | | | | • | Bi | | | | <u> </u> | _ | _ | | | | | _ | | _ | _ | | _ | | S | | | | _ | | | | _ | | | | _ | | | • | | | P | The Park of the State St | | | | _ | | | ┞ | | | | | | | | | | | % \ > \ \ | | | | • | | • | | | | • | | | | | • | | 18 | Techusian Single Communication St. Association | | | | | | | | | • | | | • | | | | | 30 | Technology T | | | | | | | | | | | | | | | | | 1 | √.\ ₹₃ \ \5 ■ | | | | | | | • | • | | | _ | | | | | | • | | | | | ● 22 | ● a | | | | | | | | | | | | Q | A CHARLIGI
A LOS GONIGO | | | | | | | | | | | | | | | | | | * TAYON | Status: PD = Predesign; D = Design; D/I = Designed but not installed; I = Installed or being installed; O = Operational; C = Complete Action: Remedial = Superfund Remedial Action; Removal = Superfund Removal Action; Other = Action under other federal programs Other technologies: a = Air sparging; b = Limestone barriers; c = Contained recovery of oily wastes; and d =
Furning gasification ^{*} Naval Communication Station is located in Scottland, not in Region 10. Appendix A Innovative Technologies at Superfund Remedial Actions THIS PAGE INTENTIONALLY LEFT BLANK #### I ABLE A-1 # REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY Table A-1 is the principal part of this chapter. It contains the most detailed, site-specific information for remedial sites for which an innovative treatment has been selected. The columns of Table A-1 present the following information: #### Kegion This column indicates the EPA Region in which the site is located. #### Site Name, State, ROD Date This column identifies the site and the operable unit for which an innovative treatment technology was selected on which a ROD was signed by an EPA official. A Record of Decision (ROD) documents the selection of remedy in the remedial program. The date shown in this column is the date An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site. #### Specific Technology the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. The second column describes the specific technology selected within a general category of innovative treatment. For example, within #### Site Description selected innovative technology for wood preserving sites. innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of #### Media (quantity) made to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been #### **TABLE A-1 (Continued)** #### **Key Contaminants Treated** also be listed that may be treated. Other contaminants that may be present, but that are not to be addressed by the listed technology, are not included. The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. Other contaminants may #### Status services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is in **design**, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is **being installed**, the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is completely signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the that treatment technology have been met and treatment has ceased installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been the season and year in which the current phase will end is given. The information is identified as the "completion planned" date. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the project. Whenever possible, ### Lead Agency, Treatment Contractor selected a contractor. contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead organization has act for EPA to manage the design or construction. No matter what agency or organization is responsible for managing the remedy, the through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may will conduct the remedy with oversight by EPA or the State (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties #### Contacts/Phone of the state RPM also is provided. Information on other useful contacts may also be provided the EPA remedial project manager (RPM) responsible for the site. If a remedy is being managed by the state, the name and phone number This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually June 1994 ## Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 #### Bioremediation (Ex situ) | N | N | | Region | |---|---|--|--| | General Motors/Central
Foundry Division, OU
2, NY (03/31/92) | General Motors/Central
Foundry Division, OU
1, NY (12/17/90) | Iron Horse Park*, MA
(09/15/88) | Site Name, State,
(ROD Date) | | Slurry phase | Slurry phase | Land treatment | Specific
Technology | | Aluminum casting
plant | Machine shops,
Engine casting
facility | Industrial and railyard waste | Site Description | | Soil (59,000 cy) | Soil (100,000 cy), Sludge (91,000 cy) from lagoon, Sediments (62,000 cy) | Sludge (25,000
cy) | Media (Quantity) | | PCBs | PCBs | PAHS | Key Contaminants
Treated | | In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated | In design; Design completion planned Summer 1995; Remedy being reconsidered; thermal desorption and solvent extraction also being evaluated | Operational;
Completion
planned Summer
1995 | Status# | | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight; ENSR
Consulting | Lead Agency
and Treatment
Contractor (if
available) | | Lisa Carson
212-264-6857 | Lisa Carson
212-264-6857 | Don McElroy
617-223-5571 | Contacts/Phone | June 1994 Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Bioremediation (Ex situ) (continued) | <u> </u> | | | | | | |--|---|---|---|---|--| | 4 | 4 | 4 | 3 | W | Region | | Dubose Oil Products*,
FL (03/29/90) | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (In
Situ), Soil Washing | Brown Wood
Preserving*, FL
(04/08/88) | Ordnance Works
Disposal Areas, WV
(09/29/89) | Whitmoyer
Laboratories, OU 3, PA
(12/31/90) | Site Name, State,
(ROD Date) | | Solid phase Windrowing with aeration and irrigation in a barn | Slurry phase
(preceded by
soil washing) | Land treatment | Land treatment | Bioremediation
(Ex Situ) | Specific
Technology | | Petroleum refining
and reuse | Wood preserving, Pine tar and turpentine manufacturing | Wood preserving,
Drum storage/
disposal | Other organic chemical manufacturing, Other inorganic chemical manufacturing | Other organic
chemical
manufacturing | Site Description | | Soil (30,000 cy) | Soil fines from approximately 6,400 cy | Soil (8,100 cy) | Soil (13,500 cy) | Soil and sediment
combined (5,600
cy) | Media (Quantity) | | VOCs (TCE, DCE,
Benzenes,
Xylenes), SVOCs
(PCP), PAHs | SVOCs (PCP), PAHs | PAHs (Creosote) | PAHs
(Carcinogenic
PAHs) | VOCs (TCE), SVOCs
(Aniline) | Key Contaminants
Treated | | Operational; Completion planned December 1994; Operation began 11/93 | In design; Design completion planned Fall 1994 | Completed;
Operational
from 1/89 to
7/90 | In design; Design completion planned Summer 1998; Treatability study underway | In design; Design completion planned Fall 1995 | Status# | | PRP
lead/Federal
oversight;
Wastech | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight;
Remediation
Technology,
Inc. | PRP
lead/Federal
oversight; ABB
Environmental
(Design) | PRP
lead/Federal
oversight;
Environ | Lead Agency
and Treatment
Contractor (if
available) | | Mark Fite
404-347-6263
George Linder
(FL)
904-488-0190 | Patsy Goldberg
404-347-6265 | Ann Marie
Gallespie
404-347-6255 | Melissa
Whittington
215-597-1286 | Chris Corbett
215-597-8186 | Contacts/Phone | June 1994 ## Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | .,. | | | | | | | |--------|--|---|---|--|---|---|---|---| | xegion | (ROD Date) | Technology | site bescribtion | media (wuantity) | Treated | Status# | Lead Agency and Treatment Contractor (if available) | Contacts/Phone | | 4 |
Whitehouse Waste Oil
Pits (amended ROD)*,
FL (06/16/92)
See also Soil Washing | Slurry phase
preceeded by
soil washing | Waste oil recycler | Soil (quantity
unknown)
Residuals from
soil washing | VOCs, PCBs, PAHs | In design; Remedy being reconsidered; further site characterizati on underway | Federal
lead/Fund
Financed | Tony Best
404-347-6259 | | 4 | Mathis Brothers -
South Marble Top Road
Landfill, GA
(03/24/93) | Bioremediation
(Ex Situ) | Landfill operation | Soil (97,700 cy) | VOCs, SVOCs,
Biocides | In design; Operation planned to start Spring 1995 | PRP
lead/Federal
oversight;
Engineering
Science | Charles King
404-347-6262 | | 4 | Benfield Industries,
NC (07/31/92) | Land treatment | Bulk chemical
mixing and
repackaging plant. | Soil (4,300 cy)
fines from soil
washing | SVOCs (Creosote) | In design; Design completion planned early 1995 | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 4 | Cape Fear Wood
Preserving, NC
(06/30/89)
See also Soil Washing | Slurry phase;
may be followed
by s/s | Wood preserving | Soil (2,400 cy);
Also fines from
soil washing | VOCs, PAHS | Design completed but not installed; will be installed no earlier than Summer 1995 | Federal
lead/Fund
Financed | Jon Bornholm
404-347-7791 | | 4 | Helena Chemical, SC
(09/08/93)
See also
Dechlorination | Bioremediation
(Ex Situ)
Anaerobic and
aerobic | Retail sales
outlet for
agricultural
chemicals | Soil quantity
unknown | VOCs (Diesel
fuel), Biocides
(DDT, Aldrin,
Dieldrin,
Chlordane,
Toxaphene) | In design; Design completion planned Winter 1994 | PRP
lead/Federal
oversight;
Ensafe | Bernie Hayes
404-347-7791
Adrian Felder
(SC)
803-734-5390 | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | 1 | | | |--|--|--|---|--| | | 5 | vi | 4 | Region | | Burlington Northern
Railroad Tie Treating
Plant*, MN (06/04/86) | Cliffs/Dow Dump*, MI
(09/27/89) | Galesburg/Koppers, IL
(06/30/89) | Para-Chem Southern,
Inc., SC (09/27/93) | Site Name, State,
(ROD Date) | | Land treatment | Bioremediation
(Ex Situ) | Land treatment | Slurry phase | Specific
Technology | | Wood preserving | Waste disposal for charcoal manufacturing plant | Wood preserving | Manufacturing Plant - products include polymers, latex, coatings, adhesives | Site Description | | Soil (9,500 cy),
Sludge(9,500 cy) | Soil (9,500 cy) | Soil (15,200 cy) | Sludge(200 cy) | Media (Quantity) | | SVOCs (Phenols,
Creosote), PAHs | VOCs (TCE, BTEX),
SVOCs (Phenol),
PAHs
(Naphthalene) | SVOCs (PCP,
Phenols), PAHs
(Creosote) | VOCs (1,1,1-TCA,
DCA, PCE), SVOCs | Key Contaminants
Treated | | Operational;
Completion
planned Fall
1994 | In design; Design completion planned Fall 1994; Reconsidering which material will be treated | In design; Design completion planned Spring 1997 | Predesign;
Currently
conducting a
treatability
study | Status# | | PRP
lead/State-Fede
ral oversight;
Remediation
Technologies,
Inc. | PRP
lead/Federal
oversight; ENSR
(Design) | PRP lead/State oversight; Remediation Technologies, Inc. | State lead/Fund
Financed; The
Fletcher Group
(prime), RMT
(subcontractor) | Lead Agency
and Treatment
Contractor (if
available) | | Tony Rutter 312-886-8961 Fred Jenness (MN) 612-297-8470 Richard Truax (RETEC) 303-493-3700 | Ken Glatz
312-886-1434 | Brad Bradley
312-886-4742
Fred Nika (IL)
217-782-6760 | Terry Tanner
404-347-7791
ext (4117)
Mike Klender
(SC)
803-734-5471 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | 6 | 6 | vi | UI | 5 | Region | |---|--|---|--|---|--| | | | | | | on | | Old Inger Oil
Refinery*, LA
(09/25/84) | Popile, AR (02/01/93)
See also
Bioremediation (In
Situ) | Moss-American*, WI
(09/27/90)
See also Soil Washing | Allied Chem & Ironton Coke, OU 2*, OH (12/28/90) See also Bioremediation (In Situ), Other Technologies | Joslyn Manufacturing
and Supply Co., MN | Site Name, State,
(ROD Date) | | Land treatment | Land treatment | Slurry phase
preceded by soil
washing | Land treatment | Land treatment Unlined treatment unit with irrigation and tilling | Specific
Technology | | Petroleum refining
and reuse | Inactive wood
preserving
operation | Wood preserving | Coke manufacturing | Wood preserving | Site Description | | Soil and Sludge
combined (120,000
cy) | Soil and Sludge
combined (156,000
cy) | Soil (quantity
unknown); fines
from soil washing | Soil (30,000 cy) | Soil (75,000 cy) | Media (Quantity) | | VOCs (Benzene,
Ethylbenzene),
PAHs (Petroleum
hydrocarbons) | SVOCs (PAHs,
Phenols) | PAHs | PAHs | SVOCs (PCP, PAHs) | Key Contaminants
Treated | | Operational;
Completion
planned Fall
2001 | Predesign; RFP
for design to
be issued Fall
1994 | Predesign; PD
completion
planned 1995;
Bench-scale
study is
underway | In design; Design completion planned early 1995 | Operational;
Completion
Planned Fall
1994 | Status# | | State lead/Fund
Financed;
Westinghouse
Haztech
(installation),
Operation to
start Fall 1994 | Federal
lead/fund
Financed | PRP lead/Federal oversight; Weston, Inc.(prime contractor)/IT Corporation(sub contractor) | PRP lead/Federal oversight; IT Corporation (prime contractor, design) | PRP lead/State oversight; BARR Engineering/GL Contracting, Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Paul Sieminski
214-655-8503
Tom Stafford
(LA)
504-765-0487 | Paul Sieminski
214-655-8503 | Russ Hart
312-886-4844 | Tom Alcamo
312-886-7278 | Kevin Turner
312-886-4444
Ann Bidwell
(MN)
612-296-7827 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | 6 | 6 | 6 | 6 | Region | |---|---|--|---|--| | North Cavalcade
Street*, TX (06/28/88) | Oklahoma Refining Co.,
OK (06/09/92)
See also
Bioremediation (In | Prewitt Abandoned Refinery, NM (09/30/92) See also Soil vapor extraction, Other Technologies | Pab Oil & Chemical
Services, LA
(09/22/93) | Site Name, State,
(ROD Date) | | Land treatment | Bioremediation
(Ex Situ)
followed by s/s | Bioremediation
(Ex Situ) | Bioremediation
(Ex Situ)
followed by s/s
for inorganics | Specific
Technology | | Wood preserving | Petroleum refining
and reuse | Crude oil refinery | Disposal site for oily drilling mud | Site Description | | Soil (5,500 cy) | Soil and sludge combined (56,000 cy), Sediments (quantity unknown) | Soil (1,500 cy),
Sludge (1,200 cy) | Soil (10,900 cy),
Sludge (15,500
cy), Sediments
(520 cy) | Media (Quantity) | | PAHs (Creosote) | VOCs, Organics
(LNAPLs) | VOCs (BTEX), PAHs | PAHs
(Carcinogenic and
Non-carcinogenic) | Key Contaminants
Treated | | In design; Design completion planned Summer 1994 | In design; Phase 1 to be completed 4/95; Phase 2 to be completed 5/96 | Predesign | Predesign; Design to begin October 1994; A treatability study will determine the type of bioremediation | Status# | | State lead/Fund
Financed | State lead/Fund
Financed | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Glenn Celerier
214-655-8523
Stephen Chong
(TX)
512-239-2441 | Philip Allen
214-665-8516 | Monica
Chapa - Smith
214-655-6780 | James Van
Buskirk
214-665-6767 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Juņe 199**,** | œ | œ | œ | 7 | ٥ | Region | |---|---|--|---|--|--| | Idaho Pole Company*,
MI (09/28/92)
See also
Bioremediation (In
Situ), In situ
Flushing | Burlington Northern
(Somers Plant)*, MT
(09/27/89)
See also
Bioremediation (In
Situ) | Broderick Wood
Products OU 2, CO
(03/24/92)
See
also
Bioremediation (In
Situ) | Vogel Paint & Wax, IA
(09/20/89) | Sheridan Disposal
Services*, TX
(12/29/88) | Site Name, State,
(ROD Date) | | Land treatment | Land treatment;
using 12-acre
unit | Land treatment | Land treatment
using four cells | Slurry phase | Specific
Technology | | Wood preserving | Wood preserving | Wood preserving | Paint/ink
formation | Industrial
landfill | Site Description | | Soil (19,000 cy),
Sediments (2,683
cy) | Soil (54,000 cy)
excavated soil | Soil (85,000 cy),
Sediments (120
cy) | Soil (40,000 cy) | Soil (13,000 cy) effected soils, Sludge (30,000 cy) of oils and sludge | Media (Quantity) | | SVOCs (PCP, PAHs) | PAHs (Creosote) | SVOCs (PCP), PAHS | VOCs (Methyl
Ethyl Ketone,
BTX) | VOCs (Benzene,
Toluene), SVOCs
(Phenols), PCBs | Key Contaminants
Treated | | In design; Design completion planned Fall 1994 | Operational; Operation began 9/93; Completion planned 1999 - 2002 | Operational; Operation started August 1994; Completion planned 2001 | Operational;
Completion
planned 1997 | Predesign; Pilot study conducted in 1991; Awaiting entry of consent decrees by court to begin design | Status# | | PRP
(ead/Federal
oversight | PRP
lead/Federal
oversight;
Remediation
Technologies,
Inc. | Federal
lead/Fund
Financed; CH2M
Hill | PRP lead/State
oversight;
Vogel | PRP lead/State
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Jim Harris
406-449-5414
(ext. 260) | Jim Harris
406-449-5414
(ext. 260) | Armando Saenz
303-293-1532 | Jack Generaux
913-551-7690
Bob Drustrup
(IA)
515-281-8900 | Gary Baumgarten
214-655-6749 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | r | T | | | | |---|--|--|--|--|--| | 9 | 9 | Co | œ | œ | Region | | Jasco Chemical Co., CA
(09/30/92) | J.H. Baxter*, CA
(09/27/90) | Wasatch Chemical*, UT
(03/29/91)
See also In situ
Vitrification | Montana Pole and Treating Plant, MT (09/21/93) See also Bioremediation (In Situ), In situ Flushing | Libby Ground Water
Contamination*, MT
(12/30/88)
See also
Bioremediation (In | Site Name, State,
(ROD Date) | | Bioremediation
(Ex Situ) may
combine aerobic
and anaerobic | Land treatment followed by fixation for metals | Land treatment
on an asphalt
pad | Land treatment | Land treatment using two 1-acre cells, soil is excavated & mixed | Specific
Technology | | Chemical blending and repacking | Wood preserving | Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Wood preserving | Wood preserving | Site Description | | Soil (1,095 cy) | Soil (30,000 cy) | Soil (1,100 cy) | Soil (208,000 cy) | Soil (45,000 cy) | Media (Quantity) | | VOCs (DCA,
Methylene
chloride,
Acetone, Xylene) | SVOCs (PCP,
Dioxins, PAHs) | VOCs (Toluene,
Xylene) | SVOCs (PCP,
Dioxins, PAHs) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | Key Contaminants
Treated | | In design; Pilot-scale treatability study planned Spring 1994 | In design; Design completion planned Winter 1994 | Completed;
Operational
from 10/92 to
12/93 | Predesign; In
negotiation | Operational;
Completion
planned 1999 | Status# | | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight;
Harding/Lawson | In negotiation | PRP
lead/Federal
oversight;
Woodward-Clyde | Lead Agency
and Treatment
Contractor (if
available) | | Rosemarie
Carroway
415-744-2235 | Kathy Setian
415-744-2254 | Bert Garcia
303-293-1537 | Sara Weinstock
406-782-7415 | Jim Harris
406-449-5414
(ext. 260)
Bert Bledsoe
(RSKERL)
405-332-2313 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 gy Through FY 1993 Juṇe 1994 | 10 | 10 | Region | |--|---|--| | Bonneville Power
Administration, OU A,
WA (05/06/93) | Umatilla Army Depot
Activity, Soil
Operable Unit*, OR
(09/30/92) | Site Name, State,
(ROD Date) | | Solid phase | Composting | Specific
Technology | | Research and
Testing Facility | Explosives washout | Site Description | | Soil (500 cy) | Soil (7,000 cy) | Media (Quantity) | | PAHS (PCP) | Explosives (TNT, RDX) | Key Contaminants
Treated | | Being installed; Installation completion planned Fall 1994; Operation to be completed by Winter 1994 | Design completed but not installed; Contract awarded; Operation scheduled for mid-fall 1994 | Status# | | Federal
facility/EPA
and State
oversight | Army lead/EPA and State oversight; Bioremediation Services, Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Nancy Harney
206-553-6635 | Harry Craig 503-326-3689 Mark Daugherty (US Army) 503-564-5294 Mike Nelson (USACE Seattle) 206-764-3458 | Contacts/Phone | ## Table A-1 REMEDIAL ACTIONS: SITE-SPECIFIC INFORMATION BY TECHNOLOGY THROUGH FY 1993 #### Bioremediation (In situ) | ω | 2 | 2 | N | | Region | |---|--|--|---|---|--| | Delaware Sand and
Gravel, DE (09/30/93)
See also Soil vapor | Applied Environmental Services, OU 1, NY (06/24/91) See also Soil vapor extraction, Other Technologies | Applied Environmental Services (Groundwater), NY (06/24/91) | FAA Technical Cente
NJ (09/26/89)
See also Soil vapor
extraction | Hocomonco Pond, ESD,
MA (09/30/85) | Site Name, State, (ROD Date) | | /93)
or | a | | * | | ie, | | In situ soil | In situ soil;
Bioventing | In situ groundwater, in conjunction w/air sparging & nutrient addition | In situ groundwater Pump & treat followed by H2O2 addition and reinjection through infiltration galleries | In situ
groundwater | Specific
Technology | | Landfill site drum
disposal area | Bulk petroleum and
hazardous waste
storage facility,
fuel blending | Bulk petroleum and
hazardous waste
storage facility | Jet fuel tank farm | Wood preserving | Site Description | | Soil (14,050 cy) | Soil (quantity unknown), Groundwater depth to gw avg. 8 feet | Groundwater | Groundwater | Groundwater | Media (Quantity) | | VOCs (Benzene,
TCE, PCE,
Methylene | VOCs (BTEX), SVOCs (Naphthalene, Bis(2-ethylhexyl) phthalate) | VOCs (BTEX) | VOCs (JP-4) | PAHs (Creosote),
Organics (DNAPLs) | Key Contaminants
Treated | | Predesign; In negotiation | Being
installed;
Operation to
start
September 1994 | Being installed; Remedial action to start in Fall 1994 | Being
installed | Being
installed;
Installation
completion
planned Fall
1995 | Status# | | PRP
lead/Federal
oversight | PRP lead/State oversight; Remediation Technologies, Inc. (Design) | PRP lead/State oversight; Remediation Technologies, Inc. | Federal
Facility, FAA
lead; R.E.
Wright | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Eric Newman
215-597-0910 | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | Mel Haupton
212-264-7681
John Grathwol
518-457-9280 | Carla Struble
212-264-4595
Keith Buch
(FAA)
609-485-6644 | Bob Leger
617-573-5734 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | Г | T | | 1 | | |--|---|--|---|---|--| | vi | | U | 4 | 4 | Region | | Allied Chem & Ironton Coke, OU 2*, OH (12/28/90) See also Bioremediation (Ex Situ), Other Technologies | Seymour Recycling
(Groundwater), IN
(09/30/87) | Seymour Recycling, IN
(09/30/87)
See also Soil vapor
extraction | Peak Oil/Bay Drums OU
1, FL (06/21/93)
See also In situ
Flushing | Cabot Carbon/Koppers, FL (09/27/90) See also Bioremediation (Ex Situ), Soil Washing | Site Name, State,
(ROD Date) | | Bioremediation
(In Situ) of
lagoon sediments | In situ
groundMater; Gw
treatment
incidental to
soil treatment | In situ soil
Nutrients plowed
into soil | In situ soil | In situ soil; Treating above/below gw table by nutrient addition | Specific
Technology | | Coke manufacturing | Chemical waste management and incineration | Chemical
waste
management and
incineration | Waste oil
re-refinery | Wood preserving, Pine tar and turpentine manufacturing | Site Description | | Sediments
(457,000 cy) from
a lagoon | Groundwater under
12 acres | Soil (190,000 cy) 12 acres to a depth of 10 feet | Soil (quantity unknown) | Soil (5,000 cy) | Media (Quantity) | | PAHS | VOCs, SVOCs, PAHs | VOCs (TCA, Carbon
Tetrachloride,
TCE) | VOCs (PCE,
Ethylbenzene),
SVOCs (PAHs),
PCBs | SVOCs (PCP), PAHS | Key Contaminants
Treated | | In design; Design completion planned Fall 1994; Operation planned to begin Spring 1995 | Operational; Gw treatment was not designed but appears to be occuring as a result of in situ soil treatment | Completed;
Operational
from 1/87 to
6/90 | Predesign; PD
completion
planned Fall
1994 | In design; Design completion planned Fall 1994 | Status# | | PRP Lead/Federal oversight; IT Corporation (prime contractor), Black & Veetch (subcontractor) | PRP
lead/federal
oversight;
Geraghty Miller | PRP
lead/Federal
oversight; ABB
Environmental
Services | Federal
lead/Fund
Financed | PRP lead/Federal oversight; McLaren-Hart (Design contractor) | Lead Agency
and Treatment
Contractor (if
available) | | Tom Alcamo
312-886-7278 | Jeff Gore
312-886-6552 | Jeff Gore
312-886-6552 | David Abbot
404-257-2643 | Patsy Goldberg
404-347-6265 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | ants | nt s | |--|---|--| | Site Description Media (Quan Industrial Landfill, Municipal Landfill Soil (16,000 to a depth of feet Inactive wood operation Media (Quan | Media (Quantity) Groundwater Soil (16,000 cy) to a depth 11 -15 feet Groundwater | Media (Quantity) Key Contaminants Treated Wocs (Vimyl Chloride, MEK, Xylene) Soil (16,000 cy) PAHs (Naphthalene) feet Groundwater NAPLS | | | | Key Contaminants Treated VOCs (Vimyl Chloride, MEK, Xylene) PAHS (Naphthalene) NAPLS | | Status# Lead Agency and Treatment Contractor (if available) In design; PRP Lead/Federal completion planned Spring Warzyn (prime 1995 Operational; Federal contractor) Operation Sometime between 1996 Hill (prime financed; CH2M Fin | Lead Agency and Treatment Contractor (if available) PRP lead/Federal oversight; Warzyn (prime contractor) Federal lead/Fund Financed; CH2M Hill (prime contractor) Féderal lead/Fund Féderal lead/Fund | | Juņe 199**,**4 ## Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | r | | | |---|---|---|---|--| | œ | 7 | 7 | 6 | Region | | Broderick Wood
Products QU 2, CO
(03/24/92)
See also
Bioremediation (Ex
Situ) | Pester Refinery Co.,
KS (09/30/92)
See also In situ
Flushing | People's Natural Gas,
IA (09/16/91) | French Limited, TX
(03/24/88) | Site Name, State,
(ROD Date) | | In situ soil and in situ gw bioventing of soil & aquifer; solids following free product recovery and dewatering | In situ soil
preceeded by in
situ soil
flushing | In situ soil; injection of nutrients and oxygenated water to treat both saturated and unsaturated soil | Bioremediation
(In Situ) In
Situ Lagoon | Specific
Technology | | Wood preserving | Refinery operation | Coal gasification | Petrochemical | Site Description | | Soil 20 acres; 10 feet to rock | Soil (70,000 cy) | Soil (18,500 cy) | Soil and Sludge combined (300,000 cy) | Media (Quantity) | | SVOCs (PCP), PAHs | PAHs
(Benzo(a)anthrace
ne, Chrysene) | VOCs (BTEX), PAHs | VOCs, PAHS | Key Contaminants
Treated | | In design; Design completion planned Fall 1994 | Predesign | Design completed but not installed; pilot study underway; decision to expand the system will be made in Fall 1994 | Completed;
Operational
1/92 - 12/93 | Status# | | Federal
lead/fund
Financed; CH2M
(prime
contractor) | PRP lead/State
oversight | PRP
lead/Federal
oversight; BARR
Engineering | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Armando Saenz
303-293-1532 | Cathy Barret
913-551-7704
Rachel Miller
913-296-1676 | Bill Bunn
913-551-7792 | Judi th Black
214-655-6735 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | | | | | |---|--|---|---|--|--| | œ | œ | œ | 69 | œ | Region | | Montana Pole and
Treating Plant
(Groundwater), MT
(09/21/93) | Montana Pole and Treating Plant, MT (09/21/93) See also Bioremediation (Ex Situ), In situ Flushing | Libby Groundwater
Contamination*, MT
(12/30/88)
See also
Bioremediation (Ex | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), In situ
Flushing | Burlington Northern
(Somers Plant)*, MT
(09/27/89)
See also
Bioremediation (Ex
Situ) | Site Name, State,
(ROD Date) | | In situ
groundwater | In situ soil | In situ
groundwater;
Injection of
H202 and
Potassium
tripolyphosphate | In situ groundwater; injection of oxygen and nutrients | In situ groundwater Carbon treatment aboveground; treatment followed by nutrient and pure oxygen addition prior to reinjection | Specific
Technology | | Wood preserving | Site Description | | Groundwater | Soil (44,000 cy) | Groundwater (40 -
80 ft deep) | Groundwater down
to 30 feet deep | Groundwater 2
areas, 20 ft deep
and 30 ft deep | Media (Quantity) | | SVOCs (PCP,
Dioxins, PAHs) | SVOCs (PCP,
Dioxins, PAHs) | VOCs (Benzene),
SVOCs (PCP), PAHs
(Creosote) | SVOCs (PCP, PAHs) | SVOCs (Phenols),
PAHs (Creosote) | Key Contaminants
Treated | | Predesign; In
negotiation | Predesign; In
negotiation | Operational; Completion planned 2001; Operation began in Spetember 1991 | Predesign | Operational; Operational Since May 1994; completion date unknown | Status# | | In negotiation | In negotiation | PRP
lead/Federal
oversight;
Woodward-Clyde | PRP
lead/Federal
oversight | PRP lead/Federal oversight; Remediation Technologies, Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Sara Weinstock
406-782-7415 | Sara Weinstock
406-782-7415 | Jim Harris
406-449-5414
(ext. 260)
Bert Bledsoe
(RSKERL)
405-332-2313 | Jim Harris
406-449-5414
(ext. 260) | Jim Harris
406-449-5414
(ext. 260) | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | 10 | 10 | • | • | ۰ | Region | |---
---|---|--|--|--| | Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA (07/14/93) See also Other Technologies | Eielson Air Force
Base*, AK (09/29/92)
See also Soil vapor
extraction | Koppers Company, Inc.
(Oroville Plant), CA
(04/04/90)
See also Soil Washing | Hexcel, CA (09/21/93) See also Soil vapor extraction, Other Technologies | Williams AFB, (OU2),
AZ (12/30/92)
See also Soil vapor
extraction | Site Name, State,
(ROD Date) | | Bioremediation;
In Situ
Bioventing | In situ soil;
Bioventing | In situ soil | In situ soil | Bioremediation
In Situ;
Bioventing | Specific
Technology | | Fire training area | Tactical air support installation Airplane fueling and maintenance | Wood preserving | Manufacturing | AFB, Flight
Training Base | Site Description | | Soil (quantity
unknown) | Soil (quantity
unknown) down to
10 ft deep | Soil (110,000 cy)
to a depth of 10
ft | Soil (quantity
unknown),
Groundwater | Soil (54,000 cy)
down to 25 feet
deep | Media (Quantity) | | VOCs (Benzene) | VOCs (JP-4),
SVOCs, PAHs
(Petroleum
Hydrocarbons,
Diesel) | SVOCs (PCPs),
PAHs | VOCs (PCE,
Acetone, MEK,
Benzene) | VOCs
(Dichlorobenzene,
1,2-DCA,
Methylene
Chloride), PAHs
(TPH) | Key Contaminants
Treated | | In design;
Pilot test
starting 5/94 | Operatio na l | Design completed but not installed; installation postponed until completion of removal action | Predesign; PD
completion
planned Fall
1994 | Being
installed;
Full-scale
operation to
start 1/95 | Status# | | USAF/Federal
oversight; E.S.
Inc. | Federal Facility/EPA and State oversight; DERA; EA Engineering (Design) | PRP
lead/Federal
oversight; SBP
Technologies | PRP lead/State
oversight | USAF - IRP/ EPA
and State
Oversight;
Earth
Technologies | Lead Agency
and Treatment
Contractor (if
available) | | Cami
Grandinetti
206-553-8696 | Mary Jane Nearman 206-553-6642 Rielle Markey (AK) 907-451-2117 Capt. Max Gandy (Eielson AFB) 907-377-4361 | Fred Schauffler
415-744-2359 | Mark Johnson
510-286-0305 | R. Mendoza
415-744-2407
William Harris
(USAF)
602-988-6486 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 #### **Chemical Treatment** | Oxidation of Solvent recovery cyanides followed by on-site s/s for | | Soil and Sludge combined, (3,000 cy) | Soil and Sludge combined, (3,000 cy) | Soil and Sludge Inorganic In design; combined, (3,000 cyanides Design | |--|---|--------------------------------------|--------------------------------------|---| | Specific Site Description Media | _ | Media (Quantity) Key Contaminants | | Key Contaminants | | din: | | | | | June 1994 Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 #### Dechlorination | r | T | r – | | | <u></u> | |---|--|--|--|---|--| | 4 | 4 | ω | 2 | 2 | Region | | Helena Chemical, SC
(09/08/93)
See also
Bioremediation (Ex
Situ) | Smith's Farm Brooks,
OU 1*, KY (09/30/91)
See also Thermal
Desorption | Saunders Supply Co, OU
1, VA (09/30/91)
See also Thermal
Desorption | Wide Beach
Development, NY
(09/30/85) | Myers Property, NJ
(09/28/90)
See also Soil Washing | Site Name, State,
(ROD Date) | | Dechlorination | Dechlorination
(part of
anaerobic
thermal
treatment) | Dechlorination | Dechlorination with APEG using an anaerobic thermal process unit | Dechlorination | Specific
Technology | | Retail sales
outlet for
agricultural
chemicals | Drum storage/
disposal | Wood preserving | Contaminated road
dust, driveways,
ditches | Pesticide
manufacturing/use/
storage | Site Description | | Soil (quantity
unknown) | Soil (18,500 cy) | Sludge (700 cy)
KOO1 RCRA waste
from a lagoon | Soil (40,000 cy) | Soil (48,000 cy),
Sediments (500
cy) | Media (Quantity) | | VOCs (Diesel
fuel), Biocides
(DDT, Aldrin,
Dieldrin,
Chlordane,
Toxaphene) | PCBs | SVOCs (PCP),
Dioxins | PCBs | SVOCs
(Chlorobenzene),
Biocides (DDT,
DDE, DDD),
Dioxins | Key Contaminants
Treated | | In design; Design completion planned Winter 1994 | Operational; Operation began in April 1994; completion planned October 1994 | In design; Design completion planned Spring 1995 | Completed;
Operational
from 9/90 to
9/91 | In design; Design completion planned Spring 1996; Design concurrent with treatability studies | Status# | | PRP
lead/Federal
oversight;
Ensafe | PRP Lead/Federal oversight; Canonie (prime contractor), SoilTech (subcontractor) | Federal
lead/Fund
Financed | Federal lead/Fund Financed; SoilTech Inc. (subonctractor to Kimmins) | PRP
lead/Federal
oversight;
Metcalf & Eddy | Lead Agency
and Treatment
Contractor (if
available) | | Bernie Hayes
404-347-7791
Adrian Felder
(SC)
803-734-5390 | Tony DeAngelo
404-347-7791 | Andy Palestini
215-597-1286 | Herb King
212-264-1129 | John Prince
212-264-1213 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 #### In situ Flushing | 2 | 2 | N | 2 | Region | |---|---|--|--|---| | Pasiey Solvents and Chemicals, Inc., NY (02/24/92) See also Soil vapor extraction | Byron Barrel & Drum,
NY (09/29/89) | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also Soil Washing | Lipari Landfill (OU
2)*, NJ (09/30/85) | Site Name, State,
(ROD Date) | | Soil flushing | Soil flushing | Soil flushing
Flushing lagoons
using treated gw | Soil flushing Flushing of area Within the slurry wall, including soil and wastes. | Specific •
Technology | | Tank farm and chemical distribution facility | Drum storage/
disposal | Pesticide
manufacturing/use/
storage | Industrial
landfili,
Municipal landfill | Site Description | | Soil (13,000 cy)
down to 30 feet
deep | Soil (5,200 cy),
Groundwater | Soil (126,000 cy)
to a depth of 15
feet in sandy
soil | Soil (650,000 cy) 16 acres to a depth of 15 feet | Media (Quantity) | | SVOCs
(Naphthalene) | VDCs (TCE, DCE,
TCA, Nethyl Ethyl
Ketone), Metals
(Chromium, Lead) | Metals (Arsenic) | VOCs (Bis-2-chloroethy lether, DCA, Dichloromethane), SVOCs (Phenol), Metals (Chromium, Lead, Nickel, Mercury) | Key Contaminants
Treated | | In design; Negotiation with PRP is going on for new design. | Predesign; PD completion planned Fall 1994 | In design; Design completion planned Winter 1995 | Operational;
Completion
planned 1999 | Status# | | Federal
lead/fund
Financed;
Ebasco (design) | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed;
Malcolm Pirnie
(Design) | Federal
lead/Fund
Financed; AMD,
Inc. | Lead Agency • and Treatment Contractor (if available) | | Sherrel Henry
212-264-8675 | Eduardo
Gonzales
212-264-5714 | Matthew
Westgate
212-264-3406
Steve Hadel
(USACE-Kansas
City)
816-426-5221 | Fred Cataneo
212-264-9542 | Contacts/Phone | Table A-1Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 In situ Flushing (continued) | | | · | T | |--|--|---|--| | 4 | 4 | 4 | Region | | Peak Oil/Bay Drums OU
1, FL (06/21/93)
See also
Bioremediation (In
Situ) | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also Thermal
Desorption | Ciba-Geigy (MacIntosh
Plant) OU 2, AL
(09/30/91)
See also Thermal
Desorption | Site Name, State,
(ROD Date) | | Soil flushing | Soil flushing | Soil flushing | Specific
Technology | | Waste oil
re-refinery | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Site Description | | Soil (quantity
unknown) | Soil (quantity
unknown) | Soil (quantity
unknown) | Media (Quantity) | | VOCs (PCE,
Ethylbenzene),
SVOCs (PANs),
Metals
(Lead,
Zinc, Chromium) | VOCs (Chloroform,
Toluene,
Xylenes),
Biocides
(Atrazine,
Diazinon,
Prometryn,
Simazine), Metals
(Copper, Lead,
Arsenic,
Chromium, Iron | VOCs (Benzene, Chloroform, Chlorene), Biocides (DDD, DDT, DDE, BHCs, Diazinon, Chlorobenzilate), Metals (Lead) | Key Contaminants
Treated | | Predesign; PD completion planned Fall 1994 | Predesign; Treatability studies ongoing; final decision on technologies will be made late 1994 | Predesign; PD completion planned Winter 1995; Treatability studies ongoing; final decision on technology will be made late 1994 | Status# | | Federal
lead/fund
Financed | PRP
lead/Federal
oversight | PRP lead/Federal oversight; CDM/FPC (Demolition/Des ign contractors) | Lead Agency
and Treatment
Contractor (if
available) | | David Abbot
404-347-2643 | Charles King
404-347-6262 | Charles King
404-347-6262 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 ### In situ Flushing (continued) | 0. | 0. | U | Vi | 4 | Region | |--|---|--|---|--|--| | South Cavalcade
Street*, TX (09/26/88)
See also Soil Washing | Koppers/Texarkana*, TX
(09/23/88)
See also Soil Washing | Rasmussen Dump, MI
(03/28/91) | Ninth Avenue Dump, IN
(06/30/89) | JADCO-Hughes, NC
(09/27/90)
See also Soil vapor
extraction | Site Name, State,
(ROD Date) | | Soil flushing With the same surfactants used for the soils treated with soil washing | Soil flushing With reinjection of treated water to 1 ft below surface | Soil flushing
(flushing part
of recycle of
treated gw) | In situ Flushing
of area inside
slurry wall | Soil flushing Preceded by vacuum extraction using the same horizontal wells | Specific
Technology | | Wood preserving | Wood preserving | Industrial
landfill,
Paint/ink
formation | Industrial
landfill | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Drum storage/ disposal, Municipal water supply | Site Description | | soil (20,000 cy) | Soil (19,400 cy)
below 1 ft,
treated by
reinjected water | Soil seepage
(basin size
unknown) | Soil (64,000 cy),
Groundwater | Soil (6,000 cy) | Media (Quantity) | | PAHs
(Benzo(a)pyrene,
Benzo(a)anthracen
e, Chrysene) | PAHs
(Benzo(a)pyrene,
Creosote), Metals
(Arsenic) | VOCs (Vinyl
Chloride,
Benzene) | VOCs (TCE, BTEX) | VOCs (TCE, Vinyl Chloride,Carbon Tetrachloride,Chl orofor, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene) | Key Contaminants
Treated | | Predesign; Technology on hold pending remediation of groundwater | In design | In design; Design completion planned Fall 1994 | Completed | In design; Design completion planned December 1994 | Status# | | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight; ENSR
(RD/RA
contractor) | PRP
lead/Federal
oversight;
Woodward Clyde
(prime
contractor) | PRP
lead/Federal
oversight;
Fluor-Daniel | PRP Lead/Federal oversight; Conestoga-Rover s & Associates (prime contractor) | Lead Agency
and Treatment
Contractor (if
available) | | Glenn Celerier
214-655-8523 | Ursula Lennox
214-655-6743 | Ken Glatz
312-886-1434 | Bernard Schorle
312-886-4746 | Michael
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 ### In situ Flushing (continued) | | | | ſ | | ſ | |---|--|---|--|--|--| | 10 | Со | ∞ | 7 | 7 | Region | | Union Pacific Railroad
Sludge Pit, ID
(09/10/91) | Montana Pole and
Treating Plant, MT
(09/21/93)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Idaho Pole Company*,
MT (09/28/92)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Lee Chemical, MO
(03/21/91) | Pester Refinery Co.,
KS (09/30/92)
See also
Bioremediation (In
Situ) | Site Name, State,
(ROD Date) | | Soil flushing | Soil flushing | Soil flushing | Soil flushing with 3 infiltration galleries; 10 ft x 50 ft each | Soil flushing
followed by in
situ
bioremediation | Specific
Technology | | Railroad
operations,
cleaning and
fueling | Wood preserving | Wood preserving | Solvent recovery | Refinery operation | Site Description | | Soil (quantity
unknown) | Soil (44,000 cy) | Soil (6,500 cy) | Soil (30,000 cy)
20 ft to gw | Soil (70,000 cy),
Sludge (30,000
cy) | Media (Quantity) | | VOCs (PCE,TCE), PAHs (Petroleum hydrocarbons), Metals (Arsenic,Cadmium) | SVOCs (PCP),
Dioxins, PAHs | SVOCs (PCP, PAHs) | VOCs (TCE) | PAHs
(Benzo(a)anthrace
ne, Chrysene) | Key Contaminants
Treated | | Predesign;
Remedy being
reconsidered | Predesign; In
negotiation | In design; Design completion planned Fall 1994 | Operational;
Completion
planned 1999;
Operation
began 5/94 | Predesign | Status# | | PRP
lead/Federal
oversight | In negotiation | PRP
lead/federal
oversight | PRP lead/State oversight; (no treatment contractor) | PRP lead/State
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Ann Williamson
206-553-2739
Clyde Cody (ID)
208-334-0556 | Sara Weinstock
406-782-7415 | Jim Harris
406-449-5414
(ext. 260) | Steven Kinser
913-551-7728
Ron Redden (MO)
314-751-8393 | Cathy Barrett
913-551-7704
Marvin
Glotzbach (KS)
913-296-2783 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 In situ Flushing (continued) | 10 | Region | |---|--| | United Chrome
Products*, OR
(09/12/86) | Site Name, State,
(ROD Date) | | Soil flushing | Specific
Technology | | Chrome plating facility | Site Description | | Soil (quantity
unknown) | Media (Quantity) | | Metals (Chromium
VI) | Key Contaminants
Treated | | Operational; Operations Operations began during Summer 1988 and will continue until GW standard is met. | Status# | | PRP
lead/Federal
oversight;
CHZMHill &
subcontractors | Lead Agency
and Treatment
Contractor (if
available) | | Alan Goodman
503-326-3685 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 In situ Vitrification | 8 Wasatch Chemical*, UT (03/29/91) See also Bioremediation (Ex Situ) | 5 Ionia City Landfill*,
MI (09/29/89) | | |--|---|------------| | In situ Vitrification consolidation of soil & waste in pond prior to treatment | In situ
Vitrification | | | Pesticide manufacturing/use/ storage, Other organic chemical manufacturing, Other inorganic chemical manufacturing | Municipal landfill | | | Soil, sludge, and solids combined to 5 feet deep (1,500 cy) | Soil (5,000 cy)
with debris, to a
depth of 15 feet | | | VOCs, SVOCs
(Hexachloro-
benzene, PCP),
Biocides, Dioxins | VOCs (Methylene
Chloride, TCA,
Styrene,
Toluene), Metals
(Lead) | | | Design completed but not installed; Installation planned fall 1994: Project completion planned Spring 1995; awaiting vendor availability | In design; Design completion planned Summer 1995 | | | PRP
lead/Federal
oversight;
GeoSafe | PRP
lead/Federal
oversight;
Geosafe | available) | | Bert Garcia
303-293-1537 | Michael Gifford
312-886-7257 | | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 #### Soil Vapor Extraction | | | | · | | | |--|---|---|--|---|--| | - | | | | 1 | Region | | Wells G&H OU 1, MA
(09/14/89) | Silresim, MA
(09/19/91) | Groveland Wells*, MA
(09/30/88) | Linemaster Switch Corporation, CT (07/21/93) | Kellogg-Deering Well
Field, CT (09/29/89) | Site Name, State,
(ROD Date) | | Soil vapor
extraction with
air flushing | Soil vapor
extraction | Soil vapor extraction (carbon absorption for air emissions) | Soil vapor extraction | Soil vapor extraction | Specific
Technology | | Drum storage/
disposal, Leaking
UST and midnight
dumping | Chemical waste
reclamation | Manufacturing | Electrical power
switches manu. facility | Solvent recovery, industrial complex, illegal dumping of solvent was | Site Description | | Soil (7,400 cy)
to a depth of 3
feet | Soil (137,000 cy) | Soil (19,000 cy)
to a depth of
25-30 feet | Soil (quantity unknown) | Soil (quantity
unknown) | Media (Quantity) | | VOCs (PCE, TCE) | VOCs (TCE, TCA,
Carbon
Tetrachloride,
Chloroform,
Styrene) | VOCs (TCE,
Methylene
Chloride, DCE) | VOCs (TCE) | VOCs (TCE, PCE,
DCE, TCA, DCA,
Vinyl Chloride) | Key Contaminants
Treated | | Operational; OU 1 consists of 5 properties, the technoly has become operational on some of the properties. | Being
installed;
Installation
completion
planned Winter
1994 | Operational | Predesign | In design; Design completion planned Fall 1994 | Status# | | PRP lead/Federal oversight; Several contractors working on the site | Federal
Lead/Fund
Financed | PRP
lead/Federal
oversight;
Terra Vac | Federal
lead/Fund
Financed | PRP
lead/Federal
oversight; GZA
Geoenviron-
mental (Design) | Lead Agency
and Treatment
Contractor (if
available) | | Mary Garren
617-573-9613
Paula
Fitzsimmons
(WA)
617-223-5572 | Mark Otis
617-573-5797 | Bob Leger
617-573-5734 | Elise Jakabhazy
617-573-5760 | Leslie McVickar
617-573-9689 | Contacts/Phone | June 1994 | _ | _ | - | _ | - | Region | |---|---|---|--|---|--| | Tinkham Garage (OU
1)*, NH (09/30/86) | Tibbetts Road*, NH
(09/29/92) | South Municipal Water Supply Well*, NH (09/27/89) See also Other Technologies | Mottolo Pig Farm, NH
(03/29/91) | Union Chemical Co., OU
1, ME (12/27/90) | Site Name, State,
(ROD Date) | | Soil vapor extraction (carbon absorption for air emissions) | Soil vapor
extraction | Soil vapor
extraction ; Air
sparging of gw | Soil vapor
extraction | Soil vapor
extraction | Specific
Technology | | Illegal dumping
site | Illegal dumping
site, primarily
painting wastes
and solvents | Ball bearing
manufacturing | Uncontrolled waste
site | Solvent recovery,
Paint stripping | Site Description | | Soil (9,000 cy) | Soil (50,000 cy)
down to 20 feet | Soil (7,500 cy),
Groundwater | Soil (3,400 cy) | Soil (10,000 cy) | Media (Quantity) | | VOCs (TCE,
Chloroform, DCE,
Vinyl chloride,
Benzene) | VOCs (PCE, TCE) | VOCS (PCE, TCA, TCE) | VOCs (TCE, TCA,
Vinyl Chloride,
DCA, DCE,
Toluene,
Ethylbenzene) | VOCs
(TCE,DCE,PCE,Xyle
ne) | Key Contaminants
Treated | | In design; Operation scheduled to begin summer 1994 | Predesign | Installed but not operational; Operation begins October 1994: Completion planned 2011 | Operational; Completion planned Spring 1995; Operation started October 1993 | In design; Design completion planned Fall 1994 | Status# | | PRP
lead/Federal
oversight;
Terra Vac | In negotiation | PRP
lead/Federal
oversight | Federal lead/Fund Financed; Metcalf & Eddy (prime contractor) OH Materials (subcontractor) | PRP
lead/Federal
oversight;
Balsam
Environmental/
VAPEX | Lead Agency
and Treatment
Contractor (if
avaitable) | | Jim DiLorenzo
617-223-5510 | Darryl Luce
617-573-5767
Tom Ardrew (NH)
603-271-2010 | Roger Duwart
617-573-9628
Tom Andreus
(NH)
603-271-2910 | Roger Duwart
617-573-9628
Joe Donovan
(NH)
603-271-2911 | Terrance
Connelly
617-573-9638
Christopher
Rushton (ME)
207-287-2651 | Contacts/Phone | | - | | | · · · · · · · · · · · · · · · · · · · | | | |--|--|---|---|--|--| | 2 | 2 | 1 | د. | - | Region | | FAA Technical Center*,
NJ (09/26/89)
See also
Bioremediation (In
Situ) | A O Polymer, Soil
treatment phase, NJ
(06/28/91) | Stamina Mills, RI
(09/28/90) | Picillo Farm Site, RI
(09/27/93) | Peterson/Puritan Inc.
(OU 1), RI (09/30/93)
See also Other
Technologies | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor extraction (carbon adsorption for air emissions) | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Specific
Technology | | Jet fuel tank farm | Polymer
manufacturing | Textile
manufacturing | Disposal area | Custom manufacturing facility Industrial and commercial area | Site Description | | Soil (33,000 cy) | Soil (7,500 cy)
to a depth of 30
feet | Soil (6,000 cy)
to a depth of 12
feet | Soil (131,000 cy) | Soil (quantity
unknown) | Media (Quantity) | | VOCs (BTEX),
SVOCs
(Chlorophenol,
Phenol) | VOCs (TCE, TCA, Trichlorofluorome thane, Toluene, Ethylbenzene), SVOCs (Naphthalene, 4-methylphenol) | VOCs (DCE, TCE) | VOCs, SVOCs,
Biocides, PCBs | VOCs (1,1,1 -
TCA, PCE, TCE) | Key Contaminants
Treated | | Being installed; Operation scheduled 1/95; completion scheduled for 2000 or later | In design; Remedial construction will be completed Fall 1994 | Predesign; PD
completion
planned
January 1995 | Predesign; EPA
negotiating
with PRP | Predesign; EPA
negotiating
with PRP | Status# | | Federal
Facility, FAA
lead; R.E.
Wright (prime
contractor) | PRP
lead/Federal
oversight;
Harding-Lawson | PRP
lead/Federal
oversight;
Environmental &
Safety Design
Inc. | Federal
lead/Fund
Financed | State lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Carla Struble
212-264-4595
Reith Buch
(FAA)
609-485-6644 | Rich Puvogel
212-264-9836 | Neil Handler
617-573-9636
Mark Dennen
(RI)
401-277-2797 | Anna Krasko
617-573-5749 | Dave Newton
617-573-9612
Leo Hellested
(RI)
401-277-2797 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Juhe 1994 | | | Τ | I | 1 | | |---|--|---|--|--|--| | N | N | 2 | 2 | 2 | Region | | Applied Environmental Services, OU 1, NY (06/24/91) See also Bioremediation (In Situ), Other Technologies | Swope Oil & Chem Co.,
Ou 2, NJ (09/27/91) | South Jersey Clothing,
NJ (09/26/91) | Naval Air Engineering
Center, OU 23, NJ
(09/27/93) | Garden State Cleaners,
NJ (09/26/91) | Site Name, State,
(ROD Date) | | Soil vapor extraction with air flushing with air sparging; area will be covered | Soil vapor
extraction
Vacuum
extraction.Biove
nting (Not
planned yet) | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Specific
Technology | | Bulk petroleum and
hazardous waste
storage facility,
fuel blending | Chemical
reclamation | Dry cleaners,
Clothing
manufacturer | Fuel storage farm | Dry cleaners | Site Description | | Soil depth to gw
averages 8 ft | Soil (253,000 cy)
2 acres, to a
depth of 80 feet | Soil (1,400 cy)
to a depth of 25
feet | Soil (3,500 cy) | Soil (300 cy) 25
ft deep; 3 feet
by 10 feet | Media (Quantity) | | VOCs (BTEX) | VOCs (TCE, PCE,
Toluene,
Ethylbenzene,
Xylene) | VOCs (TCE) | VOCs, PAHS (TPH,
Naphthalene) | VOCs (PCE) | Key Contaminants
Treated | | Design completed but not installed; Design completed in 3/94; construction to start in Summer of 1994 | In design; Design completion planned Spring 1995 | In design; Design completion planned Winter 1995 | In design; Design completion planned Fall 1994 | Operational;
Operation
began in June
1994 | Status# | | PRP lead/State oversight; Remediation Technologies, Inc. | PRP
lead/Federal
oversight;
Geraghty &
Miller (design) | Federal
lead/Fund
Financed; USACE
(design) | Federal
Facility/
Federal
Oversight | Federal
lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | Joseph Gomers
212-264-5386 | Sharon Atkinson
212-264-1217 | Jeff Gratz
212-264-6667 | Sharon Atkinson
212-264-1217 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | | | | | | |---|---|--|---|---|---|--| | N | N | 2 | 2 | N | 2 | Region | | Vestal Water Supply
1-1, NY (09/27/90) | SMS Instruments (Deer
Park), NY (09/29/89) | Pasley Solvents and
Chemicals, Inc., NY (02/24/92) See also In situ Flushing | Mattiace
Petrochemicals
Company, OU 1, NY
(06/27/91) | Genzale Plating
Company, OU 1, NY
(03/29/91) | Circuitron
Corporation, OU 1, NY
(03/29/91) | Site Name, State,
(ROD Date) | | Soil vapor extraction | Soil vapor
extraction with
catalytic
combustor for
vapors | Soil vapor
extraction | Soil vapor extraction | Soil vapor extraction precedes excavation for off-site solidification | Soil vapor
extraction | Specific
Technology | | Industrial park | Military aircraft
component
overhauler | Tank farm and chemical distribution facility | Organic chemicals
blending | Electroplating | Electroplating | Site Description | | Soil (25,000 cy) Both areas = 25,000 cy, to 28 ft depth | Soil (1,250 cy)
to a depth of 25
feet | Soil (13,000 cy)
down to 30 feet
deep | Soil (17,000 cy)
to a depth of 40
feet | Soil (275 cy) to
a depth of 30 ft | Soil (900 cy) to
a depth of 30 ft | Media (Quantity) | | VOCS (DCA, TCA,
TCE, DCE) | VOCs (TCE,
Dichlorobenzene) | VOCs (TCE, PCE,
Benzene) | VOCs (PCE, TCE,,
Benzene, Xylene) | VOCs (TCE, TCA) | VOCS (TCA, PCE,
TCE, DCA) | Key Contaminants
Treated | | In design; Design completion planned Summer 1994 | Completed; Operational from 4/92 to 12/93 | In design; Negotiation With PRP is going on for new design. | Predesign; PD
completion
planned Fall
1994 | In design; Design completion planned Fall 1994 | In design; Design completion planned Fall 1994 | Status# | | Area 2 - Fund
lead; Area 4 -
PRP lead S.V.E | Federal
lead/Fund
Financed; Four
Seasons | Federal
lead/Fund
financed;
Ebasco (design
contractor) | Federal
lead/fund
Financed | Federal
lead/Fund
Financed;
Ebasco | Federal
lead/Fund
Financed; ICF
(design
contractor) | Lead Agency
and Treatment
Contractor (if
available) | | Ed Als
212-264-0522 | Miko Fayon
212-264-4706 | Sherret Henry
212-264-8675
Jim Bologna
(NY)
518-459-3976 | Edward Als
212-264-0522 | Miko Fayon
212-264-4706 | Miko Fayon
212-264-4706 | Contacts/Phone | Juņe 199**4** | | | | | | | | |---|--|--|---|---|--|--| | W | и | W | W | 2 | N | Region | | Lord-Shope Landfill*,
PA (06/29/90) | Cryochem, OU 3, PA
(09/30/91) | Bendix, PA (09/30/88) | Delaware Sand and
Gravel, DE (09/30/93)
See also
Bioremediation (In
Situ) | Upjohn Manufacturing
Co., PR (09/30/88) | Janssen Inc., PR
(09/30/93) | Site Name, State,
(ROD Date) | | Soil vapor extraction (method to be determined in design) | Soil vapor
extraction | Soil vapor
extraction with
air flushing | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Specific
Technology | | Industrial
landfill | Machine shops,
Metal fabrication | Aircraft
instrumentation
manufacturing | Landfill site drum
disposal area | Industrial
facility, chemical
leak | Pharmaceutical
Manufacturing | Site Description | | Soil (270,000 cy)
to a depth of 30
feet | Soil (70 cy) up
to 4 ft deep | Soil (33,000 cy)
to a depth fo 10
feet | Soil (50,000 cy) | Soil (quantity
unknown) | Soil (quantity
unknown) | Media (Quantity) | | VOCs (PCE, TCE, Vinyl Chloride, Alcohols, n-butanol), SVOCs (Ketones) | VOCS (TCA, TCE,
PCE, DCA, DCE) | VOCs (PCE, TCE,
Vinyl Chloride) | VOCs (Benzene,
TCE, PCE,
Methylene
Chloride) | VOCs (Carbon
Tetrachloride,
Acetonitrile) | VOCs (Chloroform) | Key Contaminants
Treated | | Design
completed but
not installed | In design; Design completion planned Summer 1995 | Predesign;
Treatability
study
completed and
being reviewed | Predesign; In
negotiaton | Completed;
Operational
1/83 - 3/88 | Being installed; Installation completion planned Fall 1994 | Status# | | PRP
lead/Federal
oversight;
Eckenfelder | Federal
lead/Fund
Financed; CH2M
Hill | PRP
lead/Federal
oversight; ERM,
Inc. | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight;
Terra Vac | Federal
lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Dave Turner
215-597-3218 | Joe McDowell
215-597-8240 | Jim Harper
215-597-6906 | Eric Newman
215-597-0910 | Alison Hess
212-264-6040 | Adalberto
Bosque
809-729-6951 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | Electroplating Soil (60 cy) | y) vocs (TCE, Vinyl chloride) | |--|---| | Cleaning and Soil (1,000 cy) repainting of combat helmets and gas cylinders | 00 cy) VOCs (PCE, TCE) | | Electroplating Soil (1,000 cy) | 00 cy) VOCs (TCE, PCE) | | Abandoned septic and chemical waste disposal site ONAPL, to a depth of 30 feet | yocs (Benzene,
Toluene, Xylene),
a depth Syocs (Trichloro-
et propane) | | Industrial park Soil (quantity (Lord Corp. unknown) property) | antity VOCs (TCE, TCA) | | Multi-source metal Soil (quantity fabrication unknown), Soli facility bedrock | antity VOCs (TCE, PCE, Solids 1,2-DCE) | | Site Description Media (| Media (Quantity) Key Contaminants Treated | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | T | | [| | |--|--|---|--|--|--| | * | * | ٠٠. | 4 | 4 | Region | | Medley Farm, OU 1, SC
(05/29/91) | USMC Camp Lejeune
Military Base, OU 2,
NC (09/24/93) | JADCO-Hughes, NC
(09/27/90)
See also In situ
Flushing | Charles Macon Lagoon,
Lagoon #7, OU 1, NC
(09/30/91) | Robins AFB, Landfill
and Sludge Lagoon, OU
1, GA (06/28/91) | Site Name, State,
(ROD Date) | | Soil vapor extraction | Soil vapor
extraction | Soil vapor extraction with horizontal wells Followed by in situ flushing with same ports | Soil vapor
extraction with
air flushing | Soil vapor
extraction | Specific
Technology | | Other organic chemical manufacturing, Rubber manufacturing, Drum storage/disposal | Drum storage/
disposal | Plastics manufacturing, Other organic chemical manufacturing, Other inorganic chemical manufacturing, Other storage/ disposal, Municipal water supply | Petroleum refining
and reuse, Drum
storage/disposal,
Waste oil recycler | Federal facility, sludge from an industrial waste water treatment plant | Site Description | | Soil (50,000 cy)
maximum depth
60ft | Soil (16,500 cy) | Soil (6,000 cy) | Soil (1,300 cy)
combined | Soil (15,000 cy)
combined, to a
depth of 8 feet,
Sludge (quantity
unknown) | Media (Quantity) | | VOCs (DCA, DCE,
TCA, TCE, PCE,
Methylene
Chloride), SVOCs
(Phthalates) | VOCs (DCE, PCE,
TCA, Vinyl
Chloride) | VOCs (Carbon tetrachloride, Chloroform, Vinyl chloride, BTX), SVOCs (Dichlorobenzene, Trichlorobenzene) | VOCs (PCE) | VOCs (TCE, PCE,
Vinyl Chloride,
Carbon
Tetrachloride) | Key Contaminants
Treated | | Design completed but not installed; Installation completion planned for January 1995 | In design; Design completion planned Fall 1994 | In design; Design completion planned December 1994 | In design; Design completion planned Summer 1994 | Predesign; PD
completion
planned Summer
1994 | Status# | | PRP
lead/Federal
oversight; RMT,
Inc. | USMC
Lead/Federal
Oversight | PRP Lead/Federal oversight; Conestoga-Rover s & Associates (prime contractors) | PRP
lead/Federal
oversight; RMT | Federal
Facility, USAF
Lead/Federal
Oves | Lead Agency
and Treatment
Contractor (if
available) | | Ralph Howard
404-347-7791
Richard Haynes
(SC)
803-734-5487 | Gena Townsend
404-347-3016 | Micheal
Townsend
404-347-7791
Bruce Nicholson
(NC)
919-733-2801 | Giezelle
Bennett
404-347-7791
David Lown (NC)
919-733-2801 | Liz Wilde
404-347-3016 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | F | | | <u> </u> | | | |---|---|--|---|--|--| | Si . | UI | 5 | * | 4 | Region | | Enviro. Conservation and Chemical (ROD Amendment), IN (06/07/91) | American Chemical
Services*, IN
(09/30/92)
See also Thermal
Desorption | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL (12/31/90) See also Thermal Desorption | Carrier Air
Conditioning*, TN
(09/03/92) | SCRDI Bluff Road, SC
(09/12/90) | Site
Name, State,
(ROD Date) | | Soil vapor
extraction with
air flushing | Soil vapor extraction with air flushing bioenhancement for SVOCs;air flushing m/vertica wells | Soil vapor
extraction with
air flushing for
OU 6 | Soil vapor
extraction with
air flushing | Soil vapor
extraction with
air flushing | Specific
Technology | | Chemical recycler
(solvents) | Other organic
chemical
manufacturing,
Solvent recovery | Industrial
landfill,
Municipal water
supply | Manufacturer of heating and air conditioning units | Drum storage/
disposal, Solvent
recovery | Site Description | | Soil (quantity
unknown) | Soil (100,000 cy)
15 to 20 ft deep | Soil (quantity
unknown) | Soil (76,500 cy) | Soil (45,000 cy)
to a depth of 12
feet | Media (Quantity) | | VOCs (Toluene,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene,
Phenol), Organics
(BNAs) | VOCs, PCBs | VOCs (DCA, TCA,
DCE, TCE, PCE,
Vinyl Chloride,
Benzene) | VOCs (TCE) | VOCs (TCA, TCE,
PCA, PCE, DCA,
DCE, MEK,
Chlorobenzene,
BTEX) | Key Contaminants
Treated | | In design; Design completion planned for Fall 1995 | Predesign; Schedule pending completion of negotiation | In design; Design completion planned Summer 1994 | Design completed but not installed; Design- completion planned Fall 1994 | In design; Design completion planned Summer 1994 | Status# | | PRP
lead/Federal
oversight | In negotiation | PRP
lead/Federal
oversight;
Harding/Lawson | PRP
lead/Federal
oversight;
Environmental
Safety &
Designs, Inc. | PRP lead/Federal oversight; ERM DeMaximus to organize all PRPs contractors | Lead Agency
and Treatment
Contractor (if
available) | | Karen Vendl
312-886-4739 | Bill Bolen
312-353-6316 | Deborah Orr
312-886-7576 | Beth Brown
404-347-7791 | Steve Sandler
404-347-7791 | Contacts/Phone | June 1994 | | | r | , | | |--|--|---|---|--| | v | U | v | И | Region | | Main Street Well
Field, IN (03/29/91) | NIDCO II, IN
(06/30/89) | MIDCO I, IN (06/30/89) | Fisher Calo Chem, IN
(08/07/90) | Site Name, State,
(ROD Date) | | Soil vapor
extraction with
horizontal wells | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Specific
Technology | | Solvent recovery,
Water supply
contamination from
many sources | Drum storage/
disposal | Industrial
landfill | Municipal water
supply | Site Description | | Soil (22,000 cy)
to a depth of 10
feet | Soil (12,200 cy) | Soil (10,000 cy)
to a depth of 4 -
8 feet | Soil (29,500 cy) | Media (Quantity) | | VOCs (TCE) | VOCs (Methylene
chloride, TCE,
2-Butanone,
Toluene) | VOCs (TCE,
Dichloromethane,
Chlorobenzene,
2-Butanone, BTX),
SVOCs (Phenols),
PAHs | VOCS (PCE, DCA,
TCA) | Key Contaminants
Treated | | In design; East site (60% design completion by June 1, 1993)/ West site (95% design in progress) | Predesign; PD completion planned Winter 1996; Bench-scale treatability study is underway | Predesign; PD completion planned Winter 1994; Implementation planned for 1996 | In design; Design completion planned Summer 1995 | Status# | | PRP
lead/Federal
oversight;
Geraghty &
Miller | PRP
lead/federal
oversight; ERM
Northwest-prime | PRP
lead/Federal
oversight; ERM
Northcentral-pr
ime | PRP
lead/Federal
oversight;
Connestoga
Rovers - Prime | Lead Agency
and Treatment
Contractor (if
available) | | Deborah Orr
312-886-7576 | Rich Boice
312-886-4740 | Richard Boice
312-886-4740 | Jeff Gore
312-886-6552 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | 5 | 5 | 5 | VI | 5 | Region | |--|--|---|---|---|--| | Electro-Voice, OU 1,
MI (06/23/92) | Clare Water Supply, MI
(09/16/92) | Chem Central, MI
(09/30/91) | Wayne Waste
Reclamation, IN
(03/30/90) | Seymour Recycling, IN (09/30/87) See also Bioremediation (In Situ) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor extraction with horizontal wells air flushing with vertical wells | Soil vapor
extraction
(vapor treatment
through carbon) | Soil vapor
extraction with
air flushing | Soil vapor
extraction (No
need for
emissions
treatment) | Specific
Technology | | Audio equipment
manufacturer | Industrial area with above/below ground tanks multisource groundwater site | Chemical packaging and distribution | Municipal
landfill, Oil
reclamation | Chemical waste
management and
incineration | Site Description | | Soil (2,100 cy)
down to 50 feet | Soil (54,800 cy) vadose zone & dewatered area to 25 ft deep | Soil (6,200 cy)
to 8 ft deep | Soil (300,000 cy)
10 acres to a
depth of 20 feet | Soil (200,000 cy) 12 acres to a depth of 10 feet | Media (Quantity) | | VOCs (TCE, PCE,
Vinyl chloride),
PAHs | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | VOCs (DCE, TCE,
TCA, BTEX), SVOCs
(Naphthalene,
2-methyl
naphthalene) | VOCs (TCE, DCE,
Vinyl chloride,
BTEX) | VOCs (TCA, Carbon
tetrachloride,
PCE, TCE, Vinyl
chlorie, Benzene) | Key Contaminants
Treated | | Predesign; PD
completion
planned Spring
1994 | Predesign;
Design planned
to begin
Spring 1994 | In design; Design completion planned Summer 1994 | Design completed but not installed; Design completed Feb 2/94 | Operational;
Completion
planned Spring
1995 | Status# | | PRP
lead/Federal
oversight;
Fishbeck,
Thompson, Carr,
& Huber | Federal Lead/
PRP Funded;
Seacore
Environmental
Engineering | PRP
lead/federal
oversight; WW
Engineering &
Science | PRP
lead/Federal
oversight;
Warzyn, Inc. | PRP lead/Federal oversight; Canonie Engineering (installation), Geraghty & Miller (operation) | Lead Agency
and Treatment
Contractor (if
available) | | Eugenia Chow
312-353-3156 | Jon Peterson
312-353-1264 | Colleen Hart
312-353-8752 | Duane Heaton
312-886-6399 | Jeff Gore
312-886-6552 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | | Lead Agency and Treatment Contractor (if available) | |--------|--|---|--|---|--|--|--|---| | 5 | Kysor of Cadillac
Industrial*, MI
(09/29/89) | Soil vapor
extraction | Machine shops,
Truck parts
manufacturing | Soil (13,200 cy) | VOCs (TCE,
Xylene, To
Ethylbenzo | VOCs (TCE,
Xylene, Toluene,
Ethylbenzene) | (TCE, In design; ne, Toluene, Design benzene) completion planned Fall 1994 | بە.
1 | | U | Peerless Plating, MI
(09/21/92) | Soil vapor
extraction with
horizontal wells | Electroplating | Soil (6,500 cy)
depth to 7 feet | VOC.
Eth | VOCs (1,2-DCE,
TCE, Benzene,
Ethylbenzene) | (1,2-DCE, In design;
Benzene, Design
ylbenzene) completion
planned
December 1994 | , | | VI | Springfield Township
Dump, MI (09/29/90) | Soil vapor extraction | Industrial
landfill | Soil (28,000 cy) | VOC: | VOCs (TCE, TCA,
Chlorobenzene,
Toluene) | s (TCE, TCA, In design; probenzene, negotiating with PRP | | | 5 | Sturgis Municipal Well
Field, MI (09/30/91) | Soil vapor
extraction | Solvent recovery | Soil Area and
depth unknown, <
200 ft. deep | VOCs
TCA) | VOCs (TCE, PCE,
TCA) | y (TCE, PCE, Predesign; PD completion planned Fall 1994 | (TCE, PCE, | | 5 | ThermoChem, Inc. OU 1,
MI (09/30/91) | Soil vapor extraction with air flushing; May include biological enhancement | Recycling facility for organic solvents. | Soil (50,000 cy)
to a depth of 17
- 32 feet | ,
Ε.Ε.
ΟΛ | VOCs (PCE, TCE,
Ethylbenzene,
Xylene) | Cs (PCE, TCE, In design
hylbenzene,
vlene) | | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | v | Vi | Uī | UI | Region | |---|---|--|--|--| | Miami County
Incinerator, OH
(06/30/89) | Long Prairie
Groundwater
Contamination, MN
(06/27/88) | Verona Well Field, OU
2, MI (06/28/91) |
Verona Well Field
(Thomas
Solvent/Raymond
Road)*, MI (08/12/85) | Site Name, State,
(ROD Date) | | Soil vapor extraction with air flushing Treatment of off-gas determined in design | Soil vapor extraction with air flushing followed by GAC for off-gas | Soil vapor extraction Augmentation with air flushing is being considered | Soil vapor extraction (with Nitrogen sparging during part of operation) | Specific
Technology | | Municipal
landfill, Surface
impoundment | Dry cleaners | Machine shops,
Municipal water
supply | Municipal water
supply | Site Description | | Soil and solids combined (98,000 cy) | Soil (3,600 cy)
to a depth of 15
feet | Soil (30,000 cy) | Soil (35,000 cy) one half acre to a depth of 18 feet | Media (Quantity) | | VOCs (TCE, PCE,
Toluene) | VOCS (DCE, PCE,
TCE, Vinyl
chloride) | VOCs (PCE, TCA,
Toluene) | VOCs (Dichloromethane, Chloroform, Carbon Tetrachloride, BTEX, Vinyl chloride), SVOCs (Napthalene) | Key Contaminants
Treated | | In design; Design completion planned Spring 1995 | Design completed but not installed; Installation to begin Spring 1995 | Operational | Completed;
Operational
from 3/88 to
5/92 | Status# | | PRP
lead/Federal
oversight;
Connestogo
Roveis-Prime | State lead/Fund
Financed | PRP lead/Federal oversight; Geraghty & Miller (Prime), Maumee Bay (Remedial subcontractor) | Federal lead/Fund Financed; Terra Vac (subcontractor to CH2M Hill) | Lead Agency
and Treatment
Contractor (if
available) | | Anthony Rutter
312-886-8961 | Jan Bartlett
312-886-5438
Maureen Johnson
(MN)
612-296-7353 | Margaret
Guerriero
312-886-0399 | Margaret
Guerriero
312-886-0399 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | 5 | Us. | v | vi | U | Region | |---|--|--|--|--|--| | Hagen Farm Source
Control OU, WI
(09/17/90) | City Disposal
Corporation Landfill,
WI (09/28/92) | Zanesville Well Field,
OH (09/30/91)
See also Soil Washing | Skinner Landfill
(OU2), OH (06/04/93) | Pristine (ROD
Amendment)*, OH
(03/30/90)
See also Thermal
Desorption | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor
extraction | Soil vapor extraction with horizontal wells followed by excavation and soil washing for metals | Soil vapor
extraction | Soil vapor
extraction with
horizontal
trenches down to
15 feet | Specific
Technology | | Industrial and
municipal waste
disposal | Industrial
landfill,
Municipal landfill | Solvent recovery,
Auto parts
manufacturing | Sanitary landfill
and buried
industrial waste
Lagoon | Industrial waste
treatment facility | Site Description | | Soil (67,000 cy) | Soil (quantity
unknown) quantity | Soil (36,000 cy) | Soil (quantity
unknown) | Soil (19,400 cy)
3 acres and 15
feet deep | Media (Quantity) | | VOCs (Vinyl chloride, 2-Butanone, BTEX), Organics (Tetrahydrofuran) | VOCs
(Tetrahydrofuran) | VOCs (TCE, DCE) | VOCs
(Toluene,Xylene,
TCA) | VOCs (Chloroform,
DCA, PCE, TCE,
Benzene), SVOCs
(Phenol) | Key Contaminants
Treated | | Operational;
Completion
planned Summer
1996 | Predesign; PD
completion
planned Fall
1994 | In design; Design completion planned Fall 1994 | Predesign; PD completion planned Summer 1995; evaluating technical feasibility | Being installed; installation to be completed late 1994; will operate 7-10 years | Status# | | PRP
lead/federal
oversight;
Warzyn-Prime | PRP
lead/federal
oversight; Rust
Environmental
(prime
contractor) | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight;
Canonie
(installation) | Lead Agency
and Treatment
Contractor (if
available) | | Steve Padovani
312-353-6755 | Russ Hart
312-886-4844
Mike Schmoller
(WI)
608-275-3303 | Dave Wilson
312-886-1476
FTS-886-1476 | Bruce
Sypniewski
312-886-6189 | Thomas Alcamo
312-886-7278 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | 7 | 6 | 6 | υ | 5 | Region | |--|---|---|---|--|--| | Chemplex (OU 2), IA
(05/12/93) | Petro-Chemical Systems, Inc., OU 2, TX (09/06/91) See also Other Technologies | Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Other Technologies | Wausau Groundwater
Contamination, WI
(09/29/89) | Muskego Sanitary
Landfill, Interim
Action OU 1, WI
(06/12/92) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor
extraction with
air flushing and
air sparging of
groundwater | Soil vapor
extraction with
Air Sparging | Soil vapor
extraction
Off-Gas
Treatment | Soil vapor
extraction | Specific
Technology | | Landfill | Petroleum refining
and reuse | Crude oil refinery | Machine shops,
Bulk chemical
distribution | Industrial
landfill,
Municipal landfill | Site Description | | Soil (350,000 cy) | Soil (300,000 cy)
to a depth of 30
feet | Soil (quantity
unknown) | Soil (1,300 cy)
to a depth of 30
feet | Soil (300 cy) approximately 1 acre down to 15 ft deep | Media (Quantity) | | VOCs (Benzene, | VOCs (BTEX),
SVOCs
(Naphthalene) | Organics (NAPLs) | VOCS (TCE, DCE,
PCE) | VOCs (Vinyl
Chloride,
1,2-DCA,
Methylene
Chloride, BTEX) | Key Contaminants
Treated | | Predesign;
Negotiations
with PRPs
ongoing | Predesign; PD
completion
planned Summer
1995 | Predesign | Operational;
Completion
planned Summer
1995 | Design completed but not installed; Installation planned Summer 1994 | Status# | | Federat
Lead/Fund
Financed | PRP
lead/federal
oversight | PRP
lead/Federal
oversight | PRP lead/Federal oversight; Hydrogeo-Chem (sub to Conestoga-Rover s & Associates) | PRP
lead/Federal
oversight; Rust
(Design) | Lead Agency
and Treatment
Contractor (if
available) | | Nancy Johnson
913-551-7703 | Chris Villareal
214-655-6758 | Monica
Chapa - Smith
214-655-6780 | Margaret
Guerriero
312-886-0399 | Bill Haubold
312-353-6261 | Contacts/Phone | Juņe 1994 | | | | | | | |---|---|--|---|---|--| | 7 | 7 | 7 | 7 | 7 | Region | | Hastings GW
Contamination, Well
No. 3*, NE (09/26/89) | Hastings GW
Contamination (Far-Mar
Co.)*, NE (09/30/88) | Hastings GW
Contamination
(Colorado Ave)*, NE
(09/28/88) | Coleman Operable Unit
29th and Mead, KS
(09/29/92) | МсGrаы Edison, IA
(09/24/93) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor extraction | Soil vapor
extraction | Soil vapor
extraction | Soil vapor extraction | Specific
Technology | | Former grain
storage area
(fumigants) | Former grain
storage area
(fumigants) | Industrial metal
finishing/cleaning | Formerly vehicle manufacturing, currently heating, air conditioning equipment manufacturing | Former
manufacturing unit | Site Description | | Soil 1 acre down
to 120 feet deep | Soil targeting
layers at 35 ft
and 110 ft | Soil (42,700 cy) | Soil (2,000,000
cy) | Soil (quantity unknown) | Media (Quantity) | | VOCs (Carbon
tetrachloride) | VOCs (Carbon
tetrachloride,
Ethylene
dibromide) | VOCS (PCE, TCE,
DCE, TCA) | VOCs (TCE,
1,1,1-TCA, DCE,
Vinyl chloride,
Toluene) | VOCs (TCE) | Key Contaminants
Treated | | Completed;
Operational
from 7/92 to
5/93 | In design; Design completion planned Fall 1994 | In design; Design completion planned Fall 1994 | Predesign; PD completion planned Fall 1994; Soil vapor system already in place. ROD calls for expansion of the system | Predesign;
Unilateral
Order for
RD/RA is
prepared | Status# | | Federal
lead/fund
Financed;
Morrison
Knudsen | PRP
lead/Federal
oversight;
Burns &
McDonald | PRP lead/Federal oversight; ENSR (design contractor) | PRP lead/Federal oversight; Groundwater Technologies, Inc. | Federal
lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Diane Easley
913-551-7797 | Susan Hoff
913-551-7786 | Darrel Sommerhauser 913-551-7711 Richard Schlenker (NE) 402-471-3388 | Ken Rapplean
913-551-7769 | Pauletta France
913-551-7701 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | r | | Y | | |---
---|--|---|---|--| | œ | œ | œ | 7 | 7 | Region | | Rocky Flats OU 2,
Interim Remedial
Action Plan, CO
(08/10/92) | Martin Marietta
(Denver Aerospace), CO
(09/24/90)
See also Thermal
Desorption | Chemical Sales
Company, OU 1*, CO
(06/27/91) | Waverly GroundWater
Contamination, NE
(09/26/90) | Lindsay Manufacturing,
NE (09/28/90) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor
extraction | Soil vapor extraction with air flushing will recirculate treated emissions | Soil vapor
extraction | Soil vapor
extraction with
air flushing
will address hot
spots only | Specific
Technology | | Former nuclear Weapons research and development, production, and plutonium reprocessing complex | Aerospace
equipment
manufacturer -
bulk storage
facility | Chemical sales and distribution, spillage at tank farm | Grain storage
(fumigants) | Electroplating, Galvanized pipes for irrigation systems | Site Description | | Soil (25,000 cy) | Soil Less than
one acre, depth
unknown | Soil (360,000 cy)
to 35 ft deep | Soil (160,000 cy)
up to 240,000
cy(5 acres, 20-30
ft deep) | Soil targeting a
depth of 25 - 40
feet | Media (Quantity) | | VOCs (TCE, PCE,
Carbon
tetrachloride) | VOCs (TCE) | VOCs (PCE, TCE) | VOCs (Carbon
tetrachloride,
Chloroform) | VOCS (DCA, DCE,
TCE, PCE) | Key Contaminants
Treated | | Operational;
Completion
planned Summer
1995 | In design; Design completion planned Summer 1994 | In design; Design completion planned Summer 1994 | Operational;
Completion
planned 2001;
operational
since 2/88 | In design; Design completion planned Summer 1994 | Status# | | DOE Lead/Federal Oversight DOE ERP; Woodward Clyde, Roy F. Weston, Layne Environmental | PRP/State
oversite under
RCRA; Geraghty
& Miller | PRP
lead/Federal
oversight; ENSR | USDA
Lead/Federal
Oversight | PRP
lead/Federal
oversight;
Dames & Moore | Lead Agency
and Treatment
Contractor (if
available) | | Bill Frazier
303-294-1081
Scott Grace
(Rocky Flats)
303-966-7199 | George Dancik
303-293-1506
Charles Johnson
303-692-3348 | Jim Berkley
303-293-1817 | Jeff Weatherford 913-551-7695 Mary Hansen (Argonne National Lab) 708-972-4938 | Cecelia Tapla
913-551-7733 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | ۰ | ٧ | ω | Co | œ | Region | |--|---|---|--|--|--| | Indian Bend Wash Area,
AZ (09/27/93) | Hassayampa Landfill*,
AZ (08/15/92) | Utah Power and
Light/American Barrel,
UT (07/07/93) | Sand Creek Industrial
OU 1*, CO (09/29/89) | Rocky Mountain Arsenal
QU 18, interim
response, CO
(02/26/90) | Site Name, State,
(ROD Date) | | Soil vapor
extraction with
air flushing | Specific
Technology | | Dry cleaners,
Eletroplating,
Industrial
Landfill | Industrial
landfill | Coal gasification | Pesticide
manufacturing/use/
storage, Refinery | Motor pool area | Site Description | | Soil (quantity
unknown) | Soil
Approximately 10
acres | Soil (15,000 cy) | Soit (38,000 cy) | Soil (70,000 cy)
100 feet radius
and 60 feet deep | Media (Quantity) | | VOCs (TCE, PCE,
DCE, 1,1,1-TCA) | VOCs (1,1-DCE,
1,1,1-TCA,
1,2-DCE, 1,1-DCA,
TCE, 1,2-DCB) | VOCs (Styrene),
PAHs
(Naphthalene) | VOCs (TCE, PCE,
Methylene
chloride,
Chloroform) | VOCs (TCE,
Ethylbenzene,
Toluene) | Key Contaminants
Treated | | In design | In design; Design completion planned Spring 1995; Pilot-scale study completed | Predesign; PD
completion
planned Spring
1995 | Operational; Completion planned Fall 1994; Removed 70 tons to date | Completed;
Operational
from 7/91 to
12/91 | Status# | | Federal
lead/fund
Financed; CH2M
HILL | PRP lead/Federal oversight; Conestoga-Rover s, Errol L. Montgomery & Ass., Inc. | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed; OHM | U. S. Army
lead; Roy F.
Weston, Ebasco,
Harding Lawson,
Woodward Clyde | Lead Agency
and Treatment
Contractor (if
available) | | Emily Roth
415-744-2367
Jeff Dhont
415-744-2363
Wini fred Au
(AZ)
510-251-2888
(Ext.2126) | Robert Riccio
415-744-2369 | David Ostrander
303-293-1530 | Erna Acheson
303-294-1971 | Stacey Eriksen 303-294-1083 James Smith (Rocky Mtn Arsenal) 303-289-0249 | Contacts/Phone | June 1994 | | | | | | |--|--|---|---|--| | 9 | 9 | 9 | ۰ | Region | | Williams AFB, (OU2),
AZ (12/30/92)
See also
Bioremediation (In
Situ) | Phoenix-Goodyear
Airport Area (North &
South Fac), AZ
(09/26/89) | Motorola 52nd Street,
AZ (09/30/88) | Indian Bend Wash,
South Area, OU 1, AZ
(09/12/91) | Site Name, State,
(ROD Date) | | Soil vapor
extraction
Bioenhancement | Soil vapor
extraction | Soil vapor
extraction | Soil vapor extraction May vary technology at different facilities within | Specific
Technology | | AFB, Flight
Training Base | Defense related
manufacturing | Manufacturing
facility | Dry cleaners,
Electroplating,
Industrial
landfill,
Municipal landfill | Site Description | | Soil (54,000 cy) | Soil (271,200 cy)
North: 1,200 cy;
South: 270,000
cy, 60 ft deep | Soil 60 ft radius
to a depth of 25
feet | Soil maximum
depth - 90 ft | Media (Quantity) | | VOCs (Benzene 4,
Dichlorobenzene,
1,2-DCA Ethyl
Benzene), SVOCs | VOCs (DCE, TCE,
MEK, Acetone) | VOCs (TCA, TCE,
DCE, PCE,,
Ethylbenzene) | VOCs (PCE, TCE,
TCA) | Key Contaminants
Treated | | Operational;
Operation
began 3/94 | Operational | In design; Design completion planned 1995; Pilot system operational but full scale technology still being evaluated | In design; Pilot project under the Superfund Accelerated Cleanup Model initiative, schedules may vary by unit | Status# | | USAF (EPA
Oversite);
Earth
Technologies | PRP
lead/Federal
oversight;
Metcalf & Eddy
- South Area,
Malcome Pirnie
- North Area | PRP lead/State
oversight;
Dames and Moore | PRP
lead/Federal
oversight;
mixed funding | Lead Agency
and Treatment
Contractor (if
available) | | Raman Mendoza
415-744-2407
Dr.William L.
Harris (USAF)
602-988-6486 | Craig Cooper
415-744-2370 | Fred Schauffler
415-744-2359
Jeff Kulon (AZ)
602-207-4181
Hotline
602-207-4360 | Jeff Dhont
415-744-2363 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 | 9 | 9 | vo | • | 9 | Region | |---|---|--|--|--|--| | IBM (San Jose)*, CA
(12/15/88) | Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Other Technologies | Fairchild
Semiconductor/MTV-II*,
CA (06/30/89) | Fairchild
Semiconductor/MTV-I*,
CA (06/09/89) | Fairchild
Semiconductor (San
Jose)*, CA (03/20/89) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor
extraction with
air flushing | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction with
air flushing | Specific
Technology | | Computer
manufacture | Manufacturing | Semiconductor
manufacturing,
Metal finishing
facility | Semiconductor
manufacture and
metal finisher | Semiconductor
manufacturing | Site Description | | Soil (24,000 cy) | Soil (quantity
unknown) | Soil (50,000 cy) | Soil (quantity
unknown) | Soil (42,000 cy) | Media (Quantity) | | VOCs (TCA,
Acetone, Freon,
Isopropyl
Alcohol, Xylenes) | VOCs (PCE,
Acetone, MEK,
Benzene) | VOCs (TCE, PCE,
Vinyl Chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | VOCs (TCE, PCE,
Vinyl Chloride,
DCA, DCE, Freon),
SVOCs (Phenol) | VOCs (TCA,
1,1-DCE,
Freon-113,
Isopropy!
alcohol, PCE),
Xylene) | Key Contaminants
Treated | | Operational;
Completion
planned Spring
2001 | Predesign; PD
completion
planned Fall
1994 | Design completed but not installed; Installation planned October 1994 | Design completed but not installed; Installation planned October 1994 |
Completed;
operational
from 1/89 to
5/90 | Status# | | PRP lead/State
oversight;
Terra Vac | PRP lead/State
oversight | PRP
lead/Federal
oversight;
Canonie
Engineering | PRP
lead/Federal
oversight;
Canonie
Engineering | PRP lead/State
oversight;
Canonie
Engineering | Lead Agency
and Treatment
Contractor (if
available) | | Steve Hill (CA)
510-286-0433 | Mark Johnson
510-286-0305 | Elizabeth Adams 415-744-2235 James Boarer (Canonie) 415-960-1640 Thomas Jones (Fairchild) 415-960-0822 | Elizabeth Adams 415-744-2235 James Boarer (Canonie) 415-744-2231 Thomas Jones (Fairchild) 415-960-0822 | Helen McKinley
510-744-1889
Steve Hill (CA)
510-286-0433 | Contacts/Phone | Soil Vapor Extraction (continued) | | | | | <u> </u> | | |---|---|---|--|---|--| | 9 | • | • | ٥ | 9 | Region | | Lorentz Barrel and
Drum (OU 1), CA
(08/26/93) | Lawrence Livermore
National Laboratory,
CA (07/15/92) | Intersil/Siemens, CA
(09/27/90) | Intersil, CA
(09/27/90) | Intel, Mountain View*,
CA (06/09/89) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Specific
Technology | | Drum recycling
business | Research and
development
facility | Semiconductor
manufacturing | Semi conductor
manufacturing | Semiconductor
manufacturing | Site Description | | Soil (50,000 cy) | Soil (quantity unknown) | Soil (quantity
unknown) | Soil (quantity
unknown) | Soil (3,000 cy) | Media (Quantity) | | Vocs | VOCs (Fuel
hydrocarbons) | VOCs (TCE,
1,1,1-TCA,
Xylene) | VOCs (TCE,
1,1,1-TCA,
Xylene) | VOCs (TCE, PCE,
Vinyl chloride,
DCA, DCE, Freon),
SVOCs (Xylene) | Key Contaminants
Treated | | Predesign;
Design to
begin Summer
1994 | In design | Operational; Ongoing at Siemens, completed at Intersil Fall 1993 | Completed | In design;
Operation
planned Spring
1995 | Status# | | Federal
lead/Fund
Financed; URS | DOE
lead/Federal
oversight | State lead/Fund
Financed;
Levine-Fricke
(Siemens) | State lead/Fund
Financed | PRP
lead/Federal
oversight;
Weiss
Associates | Lead Agency
and Treatment
Contractor (if
available) | | Darrin
Swartz-Larson
415-744-2233 | Mike Gill
415-744-2383 | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Roshy Mozafar
510-286-1041 | Marie Lacey
415-744-2234
Roshy Mozafar
(CA)
510-286-1041 | Elizabeth Adams
415-744-2235
Eric Madera
408-522-7048
Michael Maley
(CA)
510-450-6159 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | | | r | | | |--|---|---|---|---|---|--| | 9 | 9 | 9 | 9 | 9 | 9 | Region | | Sacramento Army Depot
(Burn Pits OU), CA
(03/29/93) | Raytheon, Mountain
View*, CA (06/09/89) | Purity Oil Sales OU 2,
CA (09/30/92) | Pacific Coast
Pipeline, CA
(03/31/92) | National Semiconductor
(Monolithic Memories),
CA (09/11/91) | Monolithic
Memories/AMD - Arques,
Subunit 2, CA
(09/11/91) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Soil vapor
extraction | Soil vapor extraction | Soil vapor
extraction | Specific
Technology | | Electro-Optics equipment repair, metal plating & Treatment painting | Semiconductor manufacturing, Metal refinishing and aircraft maintenance | Petroleum refining and reuse | Petroleum refining
and reuse, ;
petroleum pumping
station | Semiconductor
manufacturing | Semiconductor
manufacturing | Site Description | | Soil (16,900 cy) | Soil (15,000 cy) | Soil (64,000 cy) | Soil (quantity
unknown) | Soil (quantity
unknown) | Soil (3,400 cy) | Media (Quantity) | | VOCs, SVOCs | VOCs (TCE, TCA,
DCE), SVOCs
(Phenol) | VOCs (TCE, PCE,
Chlorobenzene,
BTEX) | VOCs (Methlyene
chloride, DCA,
Benzene, Toluene,
Ethylbenzene) | VOCs (PCE, DCE,
Toluene,
Ethylbenzene,
Xylene), SVOCs | VOCS (PCE, TCE,
TCA), PAHS | Key Contaminants
Treated | | Operational;
Completion
planned Fall
1994;
operational
since Spring | In design;
Installation
planned to
start January
1996 | Predesign; PD
completion
planned Winter
1994 | In design | Operational;
Completion
planned Fall
1996 | Operational; Completion planned Fall 1996; Started operation in Spring 1993 | Status# | | U.S.Army
(IRP)/EPA
Oversite; OHM | PRP
lead/Federal
oversight;
GroundWater
Technology Inc. | PRP
lead/Federal
oversight;
Canonie | PRP
lead/Federal
oversight | State lead/Fund
Financed;
Harding Lawson
& Associates | State lead/Fund
Financed;
Pacific
Environmental
Group | Lead Agency
and Treatment
Contractor (if
available) | | Marlin Mezquita
415-744-2393
Dan Osburn
(SAD)
916-388-4344 | Elizabeth Adams
415-744-2235
Eric Madera
(PRP)
415-966-7772 | Joanne Cola
415-744-2238 | Cathy Mooremery
415-744-2243 | Cecil Felix
(CA)
510-286-1249 | Cecil Felix
(CA)
510-286-1249 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | <u></u> | | | | | |---|--|---|--|--| | 8 | • | • | 9 | Region | | Spectra Physics, OU 1,
CA (03/22/91) | Solvent Service, CA
(09/27/90) | Signetics (AMD 901)
(TRW), Signetics OU,
CA (09/11/91) | Sacramento Army Depot,
Tank 2 OU, CA
(12/09/91) | Site Name, State,
(ROD Date) | | Soil vapor
extraction with
horizontal wells | Soil vapor
extraction with
heat enhancement | Soil vapor
extraction | Soil vapor
extraction with
air flushing | Specific
Technology | | Semiconductor
manufacturing,
Laser
manufacturing | Solvent recycling facility | Semiconductor
manufacturing | Solvent storage
tank at an Army
Depot | Site Description | | Soil (7,200 cy) | Soil (quantity
unknown) | Soil (32,000 cy) approximately 1/4 acre down to 20 feet | Soil (150 cy) | Media (Quantity) | | VOCs (TCE) | VOCs (TCA,
Acetone,
Ethylbenzene,
Xylene), SVOCs
(Dichlorobenzene) | VOCS (TCE, DCE,
DCA) | VOCs (PCE,
Ethylbenzene and
Total Xylenes) | Key Contaminants
Treated | | Operational;
Completion
planned Winter
1997 | Operational | Operational; Although ROD Was signed in FY91, PRP has operated the remedy for several years | Completed;
Operational
from 8/92 to
1/93 | Status# | | PRP lead/State
oversight;
Levine - Fricke | RMACB; David
Keith Todd
Engineers | PRP lead/State
oversight;
weiss &
Associates | Army
(USACE)/DoD
Financed - IRP
Program; Terra
Vac | Lead Agency
and Treatment
Contractor (if
available) | | Sean Hogan
415-744-2236
Steve Hill (CA)
510-286-4833 | Marie Lacey
415-744-2234
Steve Morse
(CA)
510-286-0304
Kevin Graves
(CA)
510-286-0435 | Darrin
Swartz-Larson
415-744-2233
Kevin Graves
(CA)
510-286-0435 | Paul Townsend
(USACE
Sacramento)
916-557-6947
Dan Oburn
(Sacramento
Army Depot)
916-388-4344
Marlin Mezquita
415-744-2393 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | | | _ | r | | |---|--|--|--|--|--| | 16 | 10 | 70 | ۰ | 9 | Region | | Fairchild AFB Priority
1 cu's (cu 1) Craig Rd
LF., WA (02/13/93) | Commencement Bay/S. Tacoma Charmel/Well 12A*, WA (05/03/85) | Eielson Air Force
Base*, AK (09/29/92)
See also
Bioremediation (In
Situ) | Watkins-Johnson*, CA
(06/29/90) | Van Waters and Rogers,
CA (09/30/91) | Site Name, State,
(ROD Date) | | Soil vapor
extraction | Specific
Technology | | Landfill | Solvent recycler/
paint manufacturer | Tactical air support installation Airplane fueling and maintenance | Semiconductor
manufacturing | Chemical packaging
facility | Site Description | | Soil (945,700 cy) | Soil (100,000 cy)
to 35 ft deep | Soil (quantity
unknown) | Soil (quantity
unknown) | Soil (quantity
unknown) | Media (Quantity) | | VOCs (TCE) | VOCs (PCE,
TCE,
TCA) | VOCs (JP-4),
SVOCs (petroleum
hydrocarbons,
diesel fuel) | VOCs (DCE, TCA,
TCE) | VOCs (PCE, TCE,
TCA) | Key Contaminants
Treated | | In design; 60% design completed. Anticipate construction to start by 10/94 | Operational;
Completion
planned Fall
1999 | Operational | Being
installed;
operation
planned Fall
1994 | Operational;
since Fall
1993 | Status# | | Federal Facility, Air Force Lead/Federal Oversite; Engineering-Sci ence, Inc. | Federal
lead/Fund
Financed; AMD
Technologies,
Inc. | Federal
Facility
lead/DERA
Funded; EA
Engineering | PRP
lead/Federal
oversight;
Watkins | PRP lead/State
oversight; Van
Waters and
Rogers | Lead Agency
and Treatment
Contractor (if
available) | | Cami
Grandinetti
206-553-8696 | Kevin Rochlin
206-553-2106 | Mary Jane
Nearman
206-553-6642
Rielle Markey
(AK)
907-451-2117
Capt. Max Gandy
907-377-4361 | Kay Lawrence
415-744-2289 | Marie Lacey
415-744-2234
Susan Gladstone
(CA)
510-286-0840 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 Soil Vapor Extraction (continued) | | | | | | | | Other Technologies | | |----------------------------|--|--|--|----------------------------|--------------------------------|---|---|--------| | Rob Kiveit
206-753-9014 | Federal Facility, Army lead/Federal Oversight; USACE | In design;
Pilot study in
design | VOCs (PCE, TCE,
DCE, Vinyl
Chloride) | Soil (quantity
unknown) | Military municipal
landfill | Soil vapor
extraction with
Air Sparging | Fort Lewis Military Res. Lf 4 & Sol. Refined Coal, WA (09/24/93) See also Soil Washing, | 10 | | Contacts/Phone | Lead Agency
and Treatment
Contractor (if
available) | Status# | Key Contaminants
Treated | Media (Quantity) | Site Description | Specific
Technology | Site Name, State,
(ROD Date) | Region | #### Soil Washing | 4 | ٧ | N | N | N | Reg | |---|---|---|---|--|--| | | | | | | Region | | Cabot Carbon/Koppers,
FL (09/27/90)
See also
Bioremediation (Ex
Situ), Bioremediation | GE Wiring Devices, PR
(09/30/88) | Vineland Chemical, OU
1 and OU 2, NJ
(09/29/89)
See also In situ
Flushing | Myers Property, NJ
(09/28/90)
See also
Dechlorination | King of Prussia, NJ
(09/28/90) | Site Name, State,
(ROD Date) | | Soil washing followed by bioremediation of fines | Soil washing using water with KI2 solution as an additive, | Soil Washing | Soil washing coupled with dechlorination | Soit washing
using water with
washing agents
as an additive | Specific
Technology | | Wood preserving,
Pine tar and
turpentine
manufacturing | Wiring services facility | Pesticide
manufacturing/use/
storage | Pesticide
manufacturing/use/
storage | Waste processing facility | Site Description | | Soil (6,400 cy) | Soil and sludge
combined (5,500
cy) | Soil (62,000 cy) | Soil (48,000 cy),
Sediments (500
cy) | Soil, Sludge, and
Sediments
combined (19,200
cy) | Media (Quantity) | | SVOCs (PCP), PAHs, Metals (Arsenic, Chromium) | Metals (Mercury) | Metals (Arsenic) | Metals (Cadmium,
Lead, Arsenic,
Copper) | Metals (Chromium,
Copper, Nickel) | Key Contaminants
Treated | | In design; Design completion planned Fall 1994 | In design; Design completion planned Spring 1995 | In design; Design completion planned January 1995 | In design; Design completion planned Spring 1996 | Completed;
operational
6/93-10/93 | Status# | | PRP
lead/Federal
oversight | PRP lead/Federal oversight; Morrison Knudsen Corporation (Design) | Federal
lead/Fund
Financed;
Ebasco (Design) | PRP
lead/Federal
oversight;
Metcalf & Eddy
(Design) | PRP lead/Federal oversight; Alternative Remedial Technologies, Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Patsy Goldberg
404-347-6265 | Caroline Kwan
212-264-0151 | Matthew Westgate 212-264-3406 Steve Hadel (USACE - Kansas City) 816-426-5221 | John Prince
212-264-1213 | Kim O'Connell
(temporary
contact)
212-264-8127 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 #### Soil Washing (continued) | 6 | U | vi | 4 | 4 | Region | |---|--|---|--|---|--| | Arkwood, AR (09/28/90) | Moss-American*, WI
(09/27/90)
See also
Bioremediation (Ex
Situ) | Zanesville Well Field,
OH (09/30/91)
See also Soil vapor
extraction | Cape Fear Wood Preserving, NC (06/30/89) See also Bioremediation (Ex Situ) | Whitehouse Waste Oil
Pits (amended ROD)*,
FL (06/16/92)
See also
Bioremediation (Ex | Site Name, State,
(ROD Date) | | Soil washing followed by incineration of residuals | Soil washing followed by bioremediation of fines | Soil washing ex
situ preceded by
vacuum
extraction (in
situ) | Soil washing using water only may be followed by s/s | Soil washing followed by bioremediation of fines | Specific
Technology | | Wood preserving | Wood preserving | Solvent recovery,
Auto parts
manufacturing | Wood preserving | Waste oil recycler | Site Description | | soil (20,400 cy),
sludge (425 cy) | Soil (80,000 cy) | Soil (1,800 cy) | Soil (24,000 cy)
up to 26,000 cy | Soil and Sludge
combined (57,000
cy) | Media (Quantity) | | SVOCs (PCP),
Dioxins, PAHs | PAHs | Metals (Lead,
Mercury) | PAHs (Creosote),
Metals (Copper,
Chromium,
Arsenic) | VOCs, PCBs, PAHs,
Metals (lead) | Key Contaminants
Treated | | In design; Design completion planned Fall 1995 | Predesign; PD
completion
planned 1995;
Bench-scale
study underway | Predesign; PD
completion
planned Spring
1995 | Design completed but not installed; Construction to begin Summer 1995 | In design; Remedy being reconsidered; further site characterizati on is underway | Status# | | PRP
lead/Federal
oversight;
McLaren/Hart
(Design) | PRP lead/Federal oversight; Weston, Inc.(prime contractor), Bergmann USA (subcontractor) | PRP
lead/Federal
oversight;
Seacore Science
& Engineering
(Design) | Federal
lead/Fund
Financed | Federal
lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Cynthia Kaleri
214-655-6772 | Russ Hart
312-886-4844 | Dave Wilson
312-886-1476
FTS-886-1476 | Jon Bornholm
404-347-7791 | Tony Best
404-347-6259 | Contacts/Phone | #### Soil Washing (continued) | | Γ | | T | | r= | |--|--|--|---|--|--| | 10 | 10 | 9 | 0. | 6 | Region | | Naval Submarine Base,
Bangor Site A, OU 1,
WA (12/06/91) | Gould, Inc.*, OR
(03/31/88) | Koppers Company, Inc.
(Oroville Plant), CA
(O4/04/90)
See also
Bioremediation (In
Situ) | South Cavalcade
Street*, TX (09/26/88)
See also In situ
Flushing | Koppers/Texarkana*, TX
(09/23/88)
See also In situ
Flushing | Site Name, State,
(ROD Date) | | Soil Washing | Soil washing followed by s/s of solid residuals | Soil Washing | Soil Washing | Soil washing using water with a surfactant as an additive, | Specific
Technology | | Federal facility, ordnance detonation | Battery recycling/
disposal | Wood preserving | Wood preserving | Wood preserving | Site Description | | Soil (7,100 cy) | Soil (11,000 cy),
Solids (90,000
cy) Battery
casings | Soil (200,000 cy) | Soil (11,000 cy) | Soil (19,400 cy) | Media (Quantity) | | Ordnance
compounds (TNT,
RDX, DNT) | Metals (Lead) | SVOCs (PCPs),
Dioxins, PAHs | PAHs (Benzo(a)pyrene, Benzo(a)anthracen e, Chrysene) | PAHs (Benzo(a)pyrene, Creosote), Organics (NAPLs), Metals (Arsenic) | Key Contaminants
Treated | | Being installed; operation planned to begin 9/94 | Operational; Completion planned Summer 1995; Operation started Fall 1993 | In design;
Remedy being
reconsidered | In design; Design completion planned Summer 1994 | In design | Status# | | Federal Facility, Navy Lead/Federal Oversite; OHM Remediation Services Corp. | PRP
lead/Federal
oversight;
Canonie
Environmental | PRP
lead/Federal
oversight | PRP
lead/federal
oversight | PRP
lead/federal
oversight; ENSR
(Design) | Lead Agency
and Treatment
Contractor (if
available) | |
Jeff Rodin
206-553-4497
Chris Drury
(Navy)
206-396-5984 | Chip Humphries
(EPA Oregon
operat.)
503-326-2678
Mike Moran
(Portland
USACE)
503-326-4192 | Fred Schauffler
415-744-2359 | Glenn Celerier
214-655-8523 | Ursula Lennox
214-655-6743 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 Solvent Extraction | 6 | 4 | - | 1 | Region | |---|--|--|--|--| | United Creosoting*, TX
(09/29/89) | Carolina Transformer,
NC (08/29/91) | 0'Connor*, ME
(09/27/89) | Norwood PCBs, MA
(09/29/89) | Site Name, State,
(ROD Date) | | Solvent extraction (Critical fluid extraction followed by incineration of fluids) | Solvent extraction (may be followed by s/s) | Solvent extraction (may be followed by s/s for lead) | Solvent
extraction | Specific
Technology | | Wood preserving | Transformer repair | Salvage and electrical transformer recycling | PCB capacitor
manufacturing/
testing | Site Description | | Soil (85,000 cy)
With "tar mats"
combined | Soil (9,000 cy) | Soil and
Sediments
combined (23,500
cy) | Soil (50,000 cy),
Sediments (2,000
cy) | Media (Quantity) | | SVOCs (PCP, trace
dioxins/furans),
PAHs | PCBs | PCBs, PAHs | PCBs, PAHs | Key Contaminants
Treated | | Design completed but not installed; Installation scheduled for Summer 1995 | In design; Design completion planned Spring 1995 | In design; Design completion planned September 1995 | In design; Design completion planned Summer 1994 | Status# | | State lead/Fund
Financed; C.F.
Systems | Federal
lead/Fund
Financed | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Earl Hendrick
214-655-8519
LaReine Pound
(TX)
512-239-2437 | Luis Flores
404-347-7791 | Ross Gilleland
617-573-5766 | Bob Cianciarulo
617-573-5778 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Jupe 199.4 Thermal Desorption | N | | | _ | | Reg | |--|---|---|--|---|--| | | | | | | Region | | Industrial Latex, OU
1, NJ (09/30/92) | Ottati & Goss, NH
(01/16/87) | McKin*, ME (07/22/85) | Re-Solve*, MA
(09/24/87) | Cannon
Engineering/Bridgewate
r, MA (03/31/88) | Site Name, State,
(ROD Date) | | Low temperature
thermal
treatment | Thermal aeration | Thermal aeration
(vapors captured
on carbon) | Low temperature
thermal
treatment | Thermal aeration
(vapors captured
on carbon) | Specific
Technology | | Manufacturing of chemical adhesives and natural and synthetic rubber compounds | Drum storage/
disposal | Waste
storage/Transfer &
recycle facility. | Chemical reclamation facility | Chemical waste storage and incineration facility | Site Description | | Soil and
Sediments
combined (34,700
cy) | Soil (16,000 cy) | Soil (11,500 cy) | Soil (22,500 cy) | Soil (11,000 cy) | Media (Quantity) | | PCBs | VOCs (TCE, PCE,
DCA, Benzene) | VOCs (TCE, BTX) | VOCs, PCBs | VOCs (TCE, Vinyl
Chloride,
Benzene, Toluene) | Key Contaminants
Treated | | Predesign; PD
completion
planned Fall
1994 | Completed;
Operational
from 6/89 to
9/89 | Completed;
Operational
from 7/86 -
2/87 | Operational;
Completion
planned Fall
1994 | Completed;
Operational
from 5/90 to
10/90 | Status# | | Federal
lead/Fund
Financed | PRP
lead/Federal
oversight;
Canonie
Engineering | PRP
lead/Federal
oversight;
Canonie
Engineering | PRP
lead/Federal
oversight;
Chemical Waste
Management,
Inc. | PRP
lead/Federal
oversight;
Canonie
Engineering | Lead Agency
and Treatment
Contractor (if
available) | | Romona Pezzella
212-264-8216 | Stephen Calder
617-573-9626 | Sheila Eckman
617-573-5784 | Joe Lemay
617-573-9622 | Richard
Goehlert
617-573-5742 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 June 1994 Thermal Desorption (continued) | 2 | N | 2 | 2 | Region | |--|---|--|--|--| | Universal Oil
Products, NJ
(09/30/93) | Reich Farms*, NJ
(09/30/88) | Metaltec/Aerosystems,
OU 1 - Soil
Treatment*, NJ
(06/30/86) | Lipari Landfill Marsh
Sediment*, NJ
(07/11/88) | Site Name, State,
(ROD Date) | | Thermal
Desorption | Thermal desorption (vapors will be captured on carbon) | Low temperature thermal treatment (vapors captured on carbon) | Low temperature
thermal
treatment | Specific
Technology | | Chemical
processing plant | Drum storage/
disposal | Metal
manufacturing | Industrial
landfill,
Municipal landfill | Site Description | | Soil (23,000 cy) | Sail (8,600 cy) | Soil (9,000 cy) | soil (57,000 cy)
marsh soil | Media (Quantity) | | VOCs, PCBs, PAHs | VOCs (TCE, PCE,
TCA), SVOCs
(Phthalates) | VOCs (TCE) | VOCs (Chlorinated hydrocarbons, BTEX), SVOCs (Bis-2-chloroethy lether) | Key Contaminants
Treated | | In design; Design completion planned Summer 1995 | In design; Design completion planned Summer 1994 | Operational;
Completion
planned
December 1994 | Being installed; Operation to begin Summer 1994; completion scheduled for late 1994/early 1995 | Status# | | State lead/Fund
Financed | PRP
lead/federal
oversight | Federal
lead/Fund
Financed; USACE
conducting
design | PRP lead/Federal oversight; Sevenson Environmental Services (prime contractor), Williams Environmental (subcontractor) | Lead Agency
and Treatment
Contractor (if
available) | | Rich Puvogel
212-264-9836
Gwen Barunus
(NJ)
609-633-1455 | Kim O'Connell
(temporary
contact)
212-264-8127 | Courtney McEnery 212-264-1251 212-264 Seast Mark Keast (USACE, Kansas City) 816-426-5832 | Fred Cataneo
212-264-9542 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | | T | | T | | | |--|---|---|--|---|--| | N | N | 2 | 2 | N | Region | | Reynolds Metals
Company Study Area
Site, (RMC), NY
(09/27/93) | Fulton Terminals, Soil
Treatment, NY
(09/29/89) | Claremont Polychemical
- Soil Remedy, NY
(09/28/90) | American Thermostat,
NY (06/29/90) | Waldick Aerospace
Devices (QU 1)*, NJ
(09/29/87) | Site Name, State,
(ROD Date) | | Thermal
Desorption | Low temperature
thermal
treatment | Low temperature
thermal
treatment | Low temperature
thermal
treatment | Low temperature thermal treatment (followed by offsite s/s and disposal) | Specific
Technology | | Active aluminum production plant | Former hazardous
Waste storage
facility | Paint/ink
formation | Thermostat
manufacturing | Manufacture/
electroplating of
plane parts | Site Description | | Sediments (14,500 cy) | Soil (8,000 cy)
(Depth varies
from 12 to 15
feet). | Soil (3,000 cy) | Soil (20,000 cy) | Soil (4,000 cy) | Media (Quantity) | | PCBs | VOCS (TCE, DCE,
Benzene, Xylene) | VOCs (PCE) | VOCs (PCE, TCE) | VOCs (TCE, PCE) | Key Contaminants
Treated | | In design; Design completion planned December 1995 | In design; Design completion planned January 1995 | In design; Design completion planned Summer 1994 | Operational;
Completion
planned
December 1994 | Completed;
Operational
from 5/93 to
10/93 | Status# | | PRP
lead/Federal
oversight | PRP
lead/federal
oversight | Federal
lead/Fund
Financed; USACE
conducting
design | Federal lead/Fund financed; EBASCO (prime contractor), Williams Environmental Services (subcontractor) | Federal
lead/Fund
Financed; Rust
Remedial
Services, Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Lisa Carson
212-264-6857 | Christos
Tsiamis
212-264-5713 | Dick Kaplin
212-264-3819 | Christos
Tsiamis
212-264-5713 | John Prince
212-264-1213
George Buc
(USACE-NY
District)
908-389-3040 | Contacts/Phone | Remedial Actions: Site-specific Information By Technology Through FY 1993 Table A-1 | ω | W | ₩. | 2 | Region | |--|--|---
---|--| | Willia
OU 3, | U.S.A.
Area,
(06/28 | Solvent Sa
(09/30/90) | Sarney Far
(09/27/90) | Site Name,
(ROD Date) | | William Dick Lagoons,
OU 3, PA (03/31/93) | U.S.A. Letterkenny SE
Area, CU1*, PA
(06/28/91) | Solvent Savers, NY
(09/30/90) | Sarney Farm, NY
(09/27/90) | Name, State,
Date) | | Thermal
Desorption | Low temperature thermal treatment (may need s/s for metals after thermal desorption) | Low temperature
thermal
treatment | Thermal
Desorption | Specific
Technology | | Wastewater
disposal lagoons | Munitions
manufacturing/
storage, Drum
storage | Solvent recovery,
Chemical
reclamation | Industrial
landfill,
Municipal landfill | Site Description | | Soil (24,000 cy) | Soil (15,000 cy) | Soil (60,000 cy) | Soil (2,400 cy)
2,000 - 8,000 cy | Media (Quantity) | | VOCs (TCE, PCE,
MEK), SVOCs | VOCs (TCE, DCE,
Ethylbenzene,
Xylene) | VOCs (DCE, TCE),
PCBs | VOCs (Chloroform,
TCE, PCE,
Toluene), SVOCs
(Phthalates) | Key Contaminants
Treated | | Predesign; PD completion planned Fall 1994; Negotiating Consent Decree. PRP conducting a treatability study for SVE on deep soil layer | Operational; Completion planned November 1994; Site Work began 7/93; full-scale clean up 12/93; start up again in 5/94 | Predesign; PD
completion
planned Fall
1994 | In design; Design completion planned early 1995 | Status# | | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed;
McLaren Hart | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed; CDM
(Design) | Lead Agency
and Treatment
Contractor (if
available) | | Patrick McManus
215-597-8257 | Dennis Orenshaw
215-597-7858
Brian Hoke
(Letterkenny)
717-267-8483 | Lisa Wong
212-264-9348 | Kevin Willis
212-264-8777 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 | 4 | 4 | ы | W | Region | |--|---|--|---|--| | | | | | ion | | Ciba-Geigy (MacIntosh
Plant) OU 4, AL
(07/14/92)
See also In situ
Flushing | Ciba-Geigy (MacIntosh
Plant) OU 2, AL
(09/30/91)
See also In situ
Flushing | Saunders Supply Co, OU
1, VA (09/30/91)
See also
Dechlorination | Rentokil, VA
(06/22/93) | Site Name, State,
(ROD Date) | | Thermal
Desorption | Low temperature
thermal
treatment | Low temperature
thermal
treatment | Thermal
Desorption | Specific
Technology | | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Agriculture applications, Pesticide manufacturing/use/ storage, Other organic chemical manufacturing | Wood preserving | Wood preserving | Site Description | | Soil and other waste combined (17,000 cy) | Soil and sludge
combined (130,000
cy) to 20 ft
depth | Soil (25,000 cy) | Soil (13,000 cy) | Media (Quantity) | | VOCs (Chloroform, Toluene, Xylene), Biocides (Atrazine, Diazinon, Prometryn, Simazine) | VOCs, Biocides | SVOCs (PCP) | SVOCs (PCP),
Díoxins, PAHs | Key Contaminants
Treated | | Predesign; Treatability studies ongoing; final decision on technology will be made late 1994 | Predesign; PD completion planned summer 1996; Treatability studies ongoing; final decision on technology will be made late 1994 | In design; Design completion planned Spring 1995; Treatability studies planned | In design; Design completion planned late | Status# | | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | Federal
lead/fund
Financed | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Charles King
404-347-6262 | Charles King
404-347-6262 | Andy Palestini
215-597-1286 | Andy Palestini
215-597-1286 | Contacts/Phone | | 4 | 4 | 4 | 4 | 4 | Region | |---|--|--|---|--|--| | Wamchem*, SC
(06/30/88) | Sangamo/Twelve-Mile/Ha
rtwell PCB, OU 1, SC
(12/19/90) | Potter's Septic Tank
Service Pits, NC
(08/05/92) | Aberdeen Pesticide
Dumps, (OU 1 & OU 4),
NC (09/30/91) | Smith's Farm Brooks,
OU 1*, KY (09/30/91)
See also
Dechlorination | Site Name, State,
(ROD Date) | | Thermal desorption using catalytic cxidation of vapor | Thermal desorption (vapors captured on carbon) | Low temperature
thermal
treatment | Thermal
Desorption | Thermal desorption Anaerobic low temperature thermal treatment | Specific
Technology | | Former dye
manufacturing
plant | Capacitor
manufacturer | Waste petroleum
and septic tank
sludge disposal
pit | Pesticide
manufacturing/use/
storage | Drum storage/
disposal | Site Description | | Soil (2,200 cy) | Soil and Sludge combined | Soil (10,100 cy),
Sludge (quantity
unknown) | Soil (124,000 cy) | Soil (18,500 cy) | Media (Quantity) | | VOCs (BTX) | PCBs | VOCs (BTEX), PAHs
(Carcinogenic
PAHs,
Naphthalene) | Biocides (DDT,
Toxaphene,
Benzene
Hexachloride) | PCBs, PAHs
(Carcinogenic
PAHs) | Key Contaminants
Treated | | Completed;
operational
during 8/93 | In design; Design completion planned late 1995 | In design; Design completion planned Summer 1994 | Predesign; PD
completion
planned Spring
1995 | Operational; Completion planned October 1994; Began operation in April 1994 | Status# | | PRP
lead/federal
oversight; Four
Seasons | PRP
lead/Federal
oversight | Federal
Lead/Fund
Financed | PRP
lead/federal
oversight | PRP Lead/Federal oversight; Canonie (prime contractor), SoilTech (subcontractor) | Lead Agency
and Treatment
Contractor (if
available) | | Terry Tanner
404-347-7791 | Bernie Hayes
404-347-7791
Richard Haynes
(SC)
803-734-5487 | Beverly Hudson
404-347-7791 | Kay Crane
404-347-7791
Randy McElveen
(NC)
919-733-2801 | Tony DeAngelo
404-347-7791 | Contacts/Phone | June 1994 | U | vı | UI | υ | υı | 4 | Region | |---|---|---|--|---|--|--| | Anderson Development
(ROD Amendment)*, MI
(09/30/91) | Reilly Tar and
Chemical, IN
(09/30/93) | American Chemical
Services*, IN
(09/30/92)
See also Soil vapor
extraction | Outboard
Marine/Waukegan
Harbor, OU 3*, IL
(03/31/89) | Acme Solvent Reclaiming, Inc. OU 3 & OU 6, IL (12/31/90) See also Soil vapor extraction | Arlington Blending & Packaging Co., OU 1*, TN (06/28/91) | Site Name, State,
(ROD Date) | | Low temperature thermal treatment With off-site disposal of residuals | Thermal
Desorption | Low temperature
thermal
treatment | Low temperature
thermal
treatment | Low temperature thermal treatment followed by s/s for lead | Thermal desorption, residual soil and vapor to be dechlorinated | Specific
Technology | | Other organic
chemical
manufacturing | Wood preserving,
Coal tar refinery
and synthethic
chemical plant | Other organic chemical manufacturing, Solvent recovery | Marine products manufacturing | Industrial
landfill,
Municipal water
supply | Pesticide
manufacturing/use/
storage, Other
organic chemical
manufacturing | Site Description | | Soil and studge combined (5,100 cy) | Soil (10,000 cy) | Soil (quantity
unknown) | Soil and sediments combined (16,000 cy) | Soil (6,000 cy) | Soil (5,000 cy) | Media (Quantity) | | Organics (MBOCAs,
4, 4'- Methylene,
Bis-2-chloroanili
ne) | VOCs, SVOCs
(PAHs,Pyridine) | VOCs, PCBs | PCBs | VOCs (TCA, DCE,
DCA, TCE, PCE,
Vinyl chloride,
Benzene, 4-methyl
2 pentanone),
SVOCs
(Naphthalene),
PCBs | VOCs, SVOCs
(PCP), Biocides
(Chlordane,
Heptachlor) | Key Contaminants
Treated | | Completed;
Operational
from 9/92 to
6/93 | Predesign;
Scheduled to
end Summer
1994 | Predesign; Schedule Pending completion of negotiation with PRPs | Completed;
Operational
from 1/92 to
7/92 | In design; Design completion planned Summer 1994 | In design; Design completion planned Fall 1994 | Status# | | PRP
lead/Federal
oversight;
Weston
Services, Inc | PRP
lead/Federal
oversight | In negotiation | PRP
lead/Federal
oversight;
Soiltech | PRP
lead/Federal
oversight;
Harding Lawson | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Jim Hahnenberg
312-353-4213 | Dion Novak
312-886-4737 | Bill Bolen
312-353-6316 | Bill Bolen
312-353-6316 | Deborah Orr
312-886-7576 | Derek Matory
404-347-7791 | Contacts/Phone | Thermal
Desorption (continued) | | | | r | <u> </u> | F===== | |--|---|---|---|---|--| | 7 | vi | U1 | , U | 5 | Region | | Sherwood Medical, NE
(09/28/93) | Pristine (RCD
Amendment)*, OH
(03/30/90)
See also Soil vapor
extraction | Ott/Story/Cordova
Chemical, MI
(09/27/93) | Duell-Gardner
Landfill, MI
(09/07/93) | Carter Industries*, MI
(09/18/91) | Site Name, State,
(ROD Date) | | Thermal
Desorption | Thermal desorption Anaerobic thermal treatment | Thermal
Desorption | Low temperature
thermal
treatment | Low temperature thermal treatment (followed by s/s of soils and incin. of PCB oil) | Specific
Technology | | Operating industrial facility | Industrial waste
treatment facility | Other inorganic
chemical
manufacturing | Industrial
landfill,
Municipal landfill | Scrap metal
salvager | Site Description | | Soil (quantity unknown) | Soil (13,000 cy) | Soil (7,800 cy), Sediments (quantity unknown) | Soil (1,800 cy) | Soil (20,000 cy)
combined | Media (Quantity) | | VOCS (TCE, TCA,
DCA, Vinyl
Chloride) | SVOCs
(Pesticides,
PAHs) | VOCs, Biocides | SVOCs (Bis(2-ethyl hexyl)Phthalate), Biocides, PCBs | PCBs | Key Contaminants
Treated | | Predesign | Completed;
Operational
from 9/93 to
3/94 | In design; Design completion planned Summer 1995 | Predesign | In design; Design completion planned Summer 1994; Installation planned to begin Fall 1994 | Status# | | Federal
lead/fund
Financed | PRP
lead/Federal
oversight | Federal
lead/Fund
Financed; USACE
(design) | State lead/Fund
Financed | PRP
lead/Federal
oversight;
Connestoga-Rove
rs Associates | Lead Agency
and Treatment
Contractor (if
available) | | Steve
Auchterlonie
913-551-7778 | Thomas Alcama
312-886-7278 | Betty Lavis
312-886-4784 | Karla Johnson
312-886-5993 | Jon Peterson
312-353-1264 | Contacts/Phone | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 ## Thermal Desorption (continued) Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Other | W | И | N | _ | _ | Region | |--|--|--|---|--|--| | Brown's Battery
Breaking Site, OU 2,
PA (07/02/92)
See also Other
Technolgoies | Brodhead Creek, OU 1,
PA (03/29/91) | Applied Environmental Services, OU 1, NY (06/24/91) See also Bioremediation (In Situ), Soil vapor extraction | Peterson/Puritan Inc.
(OU 1), RI (09/30/93)
See also Soil vapor
extraction | South Municipal Water Supply Well*, NH (09/27/89) See also Soil vapor extraction | Site Name, State,
(ROD Date) | | Limestone
barrier | CROW technology using hot water injection to mobilize coal tar | Air sparging | In situ
Oxidation | Air sparging | Specific
Technology | | Battery recycling/
disposal | Coal gasification | Bulk petroleum and hazardous waste storage facility, fuel blending | Custom
manufacturing
facility
Industrial and
commercial area | Ball bearing
manufacturing | Site Description | | Groundwater | Soil (9,000 cy)
25-35 ft deep,
100 ft by 80 ft | Groundwater | Soil (1,000 cy) | Groundwater | Media (Quantity) | | Metals (Lead) | PAHS | VOCs (BTEX),
SVOCs, PAHS | Metals (Arsenic) | VOCs
(PCE,TCA,TCE) | Key Contaminants
Treated | | Predesign; in negotiation | Being
installed;
planned to be
operational
August 1994;
completion
planned
January 1995 | Design
completed but
not installed | Predesign; EPA
negotiating
with PRP | Installed but
not
operational;
operation to
begin October
1994;
completion
planned 2011 | Status# | | PRP
lead/Federal
oversight | PRP lead/Federal oversight; Remediation Technologies, Western Research Institute | PRP lead/State
oversight | PRP
lead/Federal
oversight | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Richard Watman
215-597-8996 | John Banks
215-597-8555 | Mel Hauptman
212-264-7681
John Grathwol
(NY)
518-457-9280 | Dave Newton
617-573-9612
Leo Hellested
(RI)
401-277-2797 | Roger Duwart
617-573-9628
Tom Andrews
(NH)
603-271-2910 | Contacts/Phone | # Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 ### Other (continued) | Region | Site Name, State,
(ROD Date) | Specific
Technology | Site Description | Media (Quantity) | Key Contaminants
Treated | Status# | Lead Agency
and Treatment | Contacts/Phone | |--------|--|--|---|--------------------------------------|--|--|---|--| | | | | | | | | Contractor (if available) | | | W | Brown's Battery Breaking Site, OU 2, PA (07/02/92) See also Chemical Treatment | Fuming
gasification | Battery recycling/
disposal | Soil and solids combined (45,000 cy) | Metals (Lead) | Predesign | PRP
lead/Federal
oversight;
negotiations
underway | Richard Watman
215-597-8996 | | W | Saegertown Industrial
Area Site, PA
(01/29/93)
See also Soil vapor
extraction | Air sparging | Industrial park
(Lord Corp.
property) | Groundwater | VOCs (PCE, TCA) | In design; Design completion planned Fall 1995 | PRP
lead/Federal
oversight | Steve Donohue
215-597-3166
Bob Kimball
(PA)
814-332-6075 | | ¥ | Tonolli Corporation,
PA (09/30/92) | Limestone
barrier | Battery recycling/
disposal | Groundwater | Metals (Lead) | Predesign; PD
completion
planned Summer
1994 | PRP
lead/Federal
oversight | Linda Dietz
215-597-6906 | | * | Rochester Property, SC (08/31/93) | Air sparging | Disposal site | Groundwater | VOCs (TCE, bis
(2-ethylhexyl
phthalate)) | Predesign;
Design to be
completed
Winter 1994 | PRP
lead/Federal
oversight | Sheri Panabaker
404-347-7791 | | UI | Allied Chem & Ironton
Coke, QU 2*, OH
(12/28/90)
See also
Bioremediation (Ex
Situ), Bioremediation
(In Situ) | Land farming
magnetically
enhanced | Coke manufacturing | Soil (23,000 cy) | PAHs | In design;
Operations to
begin Spring
1995 | PRP Lead/Federal oversight; IT Corporation (Design), Black & Veetch (subcontractor) | Tom Alcamo
312-886-7278 | | 6 | Prewitt Abandoned Refinery, NM (09/30/92) See also Bioremediation (Ex Situ), Soil vapor extraction | Air sparging | Crude oil refinery | Groundwater | Organics (NAPLs) | Predes i gn | PRP
lead/Federal
oversight | Monica
Chapa-Smith
214-655-6780 | Table A-1 Remedial Actions: Site-specific Information By Technology Through FY 1993 Other (continued) | 10 | 10 | 9 | 6 | Region | |--|---|--|--|--| | Fort Lewis Military
Res. Lf 4 & Sol.
Refined Coal, WA
(09/24/93)
See also Soil Washing,
Soil vapor extraction | Fairchild AFB, Priority 1 OU's (OU 2) FT-1, WA (07/14/93) See also Bioremediation (In Situ) | Hexcel, CA (09/21/93) See also Bioremediation (In Situ), Soil vapor extraction | Petro-Chemical Systems, Inc., OU 2, TX (09/06/91) See also Soil vapor extraction | Site Name, State,
(ROD Date) | | Air sparging | Air sparging | Air sparging | Air sparging | Specific
Technology | | Military municipal
landfill | Fire training area | Manufacturing | Petroleum refining
and reuse | Site Description | | Groundwater | Groundwater | Groundwater | Groundwater to a
depth of 30 feet | Media (Quantity) | | VOCs (PCE, TCE,
DCE, Vinyl
chloride) | VOCs (Benzene) | VOCs (PCE,
Acetone, MEK,
Benzene) | VOCs (BTEX),
SVOCs
(Naphthalene) | Key Contaminants
Treated | | In design;
Pilot study in
design | In design;
Treatability
studies/pilot
test 5/94 | Predesign; PD
completion
planned Fall
1994 | Predesign; PD
completion
planned Summer
1995; pilot
study planned
Fall 1994 | Status# | | Federal
facility, U.S.
Army
lead/Federal
oversight | Federal
Facility, Air
Force
lead/Federal
oversight | PRP lead/State
oversight | PRP
lead/Federal
oversight | Lead Agency
and Treatment
Contractor (if
available) | | Bob Kievit
206-753-9014 | Carmela
Grandinetti
206-553-8696
 Mark Johnson
510-286-0305 | Chris Villareal
214-655-6758 | Contacts/Phone | #### TABLE A-2 # REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR Table A-2 shows NPL sites at which established treatment technologies have been selected as part of the remedy. Established treatment technologies include: incineration, solidification/stabilization, and others. The sites are ordered by fiscal year to give some initial information on the status of implementation: in general, earlier RODs have progressed furthest in design and construction. TABLE A-2 REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR On-Site Incineration On-Site Incineration (continued) | & & & & & & & & & & & & & & & & & & & | & & & & & & & & & & & & & & & & & & & | 888 | × × × × | 9 8 8 8 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 | 8 8 8 8 8 8 | 85 85 | FY | |---|--|-----------------------------------|--|--|---|---|-----------| | ω4νννν | ω ωωρ | 2 1 0 | у Q (V) (| 1 4 4 A A | 4 2 2 2 6 | Ø 01 12 12 | REGION | | Ordnance Works Disposal Zellwood Groundwater LaSalle Electrical Utilities Fort Wayne Reduction Forest Waste Products Pristine | Love Canal Delaware Sand & Gravel Southern Maryland Wood Treating Drake Chemical/Phase III | Rose Disposal Pit Lipari Landfill | Rose Township Dump
Laskin/Poplar Oil
Bayou Bonfouca
Cleve Reher | Ottati & Goss Davis Liquid Waste Tower Chemical Geiger/C&M Oil | Baird & McGuire Mowbray Engineering LaSalle Electrical Utilities Arrowhead Refinery Fields Brook Sikes Disposal Pit | Bog Creek Farm Bridgeport Rental & Oil ACME Solvent MOTCO | SITE NAME | | OM IN IT W | NY
DE
MD
PA | N MA | LA
OH
MI | SC FL SN NH | TX OH NA AL | Z H Z Z | STATE | | | | | | | | | | | 88888 | 8888 | 888 | 888 | 8 8 8 8 8 | 8 8 8 8 8 8 | & & & & & & & & & & & & & & & & & & & | FY | | 90 5
90 6
90 6
7 | | 90 1
90 2
90 3 | | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 89 1
89 1
89 2
89 2 | 88 5
88 6
88 7 | FY REGION | | 7 6 6 5 5 | . | | | 4 4 N N | 4 3 2 2 1 1 | | | ^{*} Residuals to be treated with soldification/stabilization. TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR On-Site Incineration (continued) **June 1994** Off-Site Incineration (continued) | 28 | 84 | 84 | FΥ | | | 93 | | 93 | | 93 | | 93 | 93 | | | 92 | 92 | | 23 | 91 | 91 | 91 | 91 | | | 8 | | | 98 | FY | |---|-----------------------------------|-----------------------|-----------------|----------------------------|-----------------------|---------------------|-------------------|------------------------|----------------|-----------------------------|-------------------------|--------------------------|-----------------------|-----------------------------|-------------------|----------------------------|----------------------------|-------------------|-------------------------------|----------------------------|----------------------|----------------------------|--------------------------|-------------------------|-------------------|-------------------|-------|--------------------------------|----------------------|------------| | 10 | Ç, | 5 | REGION | | | 6 | | 6 | | 5 | | ω | w | | | 6 | S | | 4 | 5 | 4 | . ω | w | | | 10 | | | 7 | REGION | | Western Processing Phase I | Incineration
Laskin/Poplar Oil | Berlin & Farro Liquid | SITE NAME | | Off Site Incineration | Vertac | (Winnfield Plant) | American Cresote Works | & Pole | MacGillis&Gibbs Bell Lumber | (South Marble Top Road) | Mathis Brothers Landfill | Seagertown Industrial | | (Operable Unit 1) | Gulf Coast Vacuum Services | Savanna Army Depot | (Operable Unit 1) | Alabama Army Ammunition Plant | Allied Chem & Ironton Coke | Ciba Geigy Corp. | Eastern Diversified Metals | Whitmoyer Labs, Inc. OU3 | | | FMC Yakima Pit | Park) | Contamination (East Industrial | Hastings Groundwater | SITE NAME | | WA | НО | MI | STATE | | | AR | | LA | | X | | GA | PA | | | LA | П | | AL | HO | ΑL | PA | PA | | | WA | | | NE | STATE |
Propri | | 89 | 89 | | % | 88 | 88 | 88 | 8 | 88 | 88 | 88 | 88 | 88 | 88 | 80 | | | 87 | 87 | 87 | 8 | 86 | 86 | 86 | 86 | 85 | 85 | 1 | 8 | 8 | FY | | , , , , , , , , , , , , , , , , , , , | 1 | | 7 | 7 | 6 | S | ω | ω | ω | ω | 2 | 2 | 2 | _ | | | 6 | 4 | 2 | 7 | 5 | (A | အ | ω | œ | 6 | 1 | S | 2 | REGION | | O'Connor Pinette's Salvage Yard | W.R. Grace (Acton Plant) | | (R&S)
Syntex | Minker/Stout/Romaine Creek | S. Calvacade St. | Belvidere Municipal | Fike Chemical | Douglassville Disposal | Berks Sand Pit | Wildcat Landfill | Brewster Well Field | Reich Farms | Ewan Property | Cannon Engineering/Plymouth | | Complex | Sand Springs Petrochemical | Sodyeco | Williams Property | Ellisville Area/Bliss | Spiegelberg Landfill | Metamora Landfill | Westline | Drake Chemical/Phase II | Woodbury Chemical | Triangle Chemical | Yard | Byron/Johnson Salvage | Swope Oil & Chemical | SITE NAME | | ME
ME | MA | | MO | MO | ΤX | IL | WV | PA | PA | DE | Ϋ́N | Z | Z | MA | | | OK | NC | Z | MO | M | MI | PA | PA | 60 | XT | i | Ħ | Z | STATE | ^{*} Residuals to be treated with soldification/stabilization. # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR Off-Site Incineration (continued) # Off-Site Incineration (continued) | 91 | 91 | 91 | | 8 | 8 | 8 | 8 | | 8 | ૪ | 8 | ક | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | FY | |---|--------------------|----------------|----|---------------------|-----------------------|------------------------------------|--------------------|-------|-----------------------------|----------------------------|--------------------------------|---------------------------------|----------------------------------|---------------------|---------------------|----------------------------|---------------------|------------------------------|----------------------|-------------------------|-------------------------|--------------------------------------|------------------------|-------------------|-------------------|-----------------------------------|-----------------------|-------------|---------------------------------|---------------------|------------------------------|------------------------|--------------------|------------------------|-----------| | » N | 2 | - | | 00 | ∞ | 00 | 7 | | 7 | 6 | 6 | 6 | 6 | ω | 2 | 2 | 2 | 2 | 2 | - | _ | | | 00 | 0 | 5 | 5 | S | S | S | 4 | ω | u | 2 | KEGION | | Swope Oil Waldick Aerospace Devices, Inc. | Curcio Scrap Metal | Union Chemical | | Ogden Defense Depot | Sand Creek Industrial | Martin Marietta (Denver Aerospace) | Shenandoah Stables | Plant | Fairfield Coal Gasification | Hardage/Criner (Amendment) | Rogers Road Municipal Landfill | Jacksonville Municipal Landfill | Arkwood | Greenwood Chemical* | Sealand Restoration | Mattiace Petrochemicals | Sayreville landfill | Hooker Chemical-Ruco Polymer | FAA Technical Center | Kearsarge Metallurgical | Beacon Heights Landfill | | | Woodbury Chemical | United Creosoting | Alsco Anaconda | Cliff/Dow Dump | Wedzeb | Outboard Marine/Waukegan Harbor | Cross Brothers Pail | Newsom Brothers Old Reichold | Whitmoyer Laboratories | M.W. Manufacturing | Claremont Polychemical | SITE NAME | | <u> </u> | 2 | ME | | TU | 60 | | МО | | IA | OK | AR | AR | AR | VA | NY | ΝY | Z | Z | Z | NH | CŢ | | | 8 | XT | OH | MI | Z | I | F | MS | PA | PA | NY | STATE | 92 | 3 | 83 | 92 | 92 | 92 | 92 | | | | 91 | | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | | 91 | 91 | 91 | 91 | 91 | 91 | | 91 | 91 | 91 | 91 | 91 | 91 | FY | | 92 10 | | 92 9 | 92 | | 92 3 | | | | | 91 10 | | 91 10 | 91 9 | 91 8 | 91 8 | 91 7 | 91 7 | 91 7 | 91 7 | 91 6 | | 91 5 | 91 5 | 91 5 | 91 5 | 91 5 | 91 4 | | 91 4 | 91 3 | | | | 91 2 | FY REGION | | | 3 | 9 | | | | | | | Pole | | Tideflats | | 91 9 Advanced Micro Devices Inc. | | | 91 7 Kem-Pest Laboratories | 7 | 7 | | 6 P | Service (Amendment) | 91 5 Summit National Liquid Disposal | 91 5 Carter Industries | | 5 | 91 5 Acme Solvent Reclaiming Inc. | 91 4 Wrigley Charcoal | (Amendment) | 91 4 Aberdeen Pesticide Dumps | | | | | | | ^{*} Residuals to be treated with soldification/stabilization. ## Off-Site Incineration (continued) ŦΥ REGION SITE NAME STATE ΥŦ REGION Off-Site Incineration (continued) SITE NAME STATE | 93 | 93 | | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | | 93 | | 92 | FY | |--------------------|-------------------------|--------|-------------------------------|-------------------------------|---------------------------|--------|-----------------------------|-----------------------------------|------------------|-----------------------|------------------|-------------------------------|-------------|--|-------------| | 10 | 10 | | ∞ | 200 | 9 0 | 6 | 4 | w | w | , | | 1 | | 10 | REGION | | Harbor Island-Lead | Hanford 1100-Area (DOE) | Barrel | Utah Power and Light/American | Rocky Mountain Arsenal (OU29) | Montana Pole and Treating | Vertac | Koppers (Morrisville Plant) | Pentokil Virginia Wood Preserving | Hunterstown Road | Pinettes Salvage Yard | Battalion Center | Davisville Naval Construction | | U.S. DOE Idaho
National Engineering Lab (Operable Unit 23) | SITE NAME S | | WA | WA | UT | | CO | MT | AR | NC | VA | PA | ME | | RI | | Ħ | STATE | | | | | | | | | | | | | | | | - | _ | ^{*} Residuals to be treated with soldification/stabilization. # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR | REGION REGION 2 2 4 4 4 1 10 10 10 10 10 10 10 | Celanese
Amnicola Dump | 4 4 | 89 | MA | Charles George Land Reclamation | 1 | 88 | |--|---------------------------|---------------|----|----------------|---------------------------------|--------|--------------| | REGION SITE NAME STATE Statistical | Cape Fear Wood Preserving | 4 | 89 | | P | | | | Solidification/Stabilization STATE Solidification State Stat | mith Farm Brooks | | 89 | | Complex | (| | | Solidification/Stabilization STATE Solidification State Stat | assouf-Kimerling Batt | | 89 | 0 K | Sand Spring Petrochemical | 6 | 87 | | Solidification/Stabilization STATE Solidification State Stat | rdnance Works Dispo | | 89 | LA | Cleve Reber | 6 | 87 | | Solidification/Stabilization STATE Solidification STATE Stat | lebelka Auto Salvage | | 89 | AR | Mid-South Wood | 6 | 87 | | Solidification/Stabilization | ouglassville Disposal | | 89 | AR | Gurley Pit | 6 | 87 | | Solidiffication/Stabilization | Traig Farm | | 89 | WI | Northern Engraving | S | 87 | | REGION SITE NAME STATE State | Aarathon Battery | | 89 | M | Liquid Disposal | 5 | 87 | | REGION SITE NAME STATE Solidiffication STATE Solidiffication STATE Sta | eRewal Chemical | | 89 | SC | Palmetto Wood Preserving | 4 | 87 | | REGION SITE NAME STATE FY REGION |)'Connor | | 89 | SC | Independent Nail | 4 | 87 | | REGION SITE NAME STATE FY REGION | V.R. Grace (Acton Pla | 1 | 89 | SC | Geiger/C&M Oil | 4 | 87 | | REGION SITE NAME STATE FY REGION | ullivan's Ledge | - S | 89 | FL | Gold Coast | 4 | 87 | | REGION SITE NAME STATE FY REGION | | | | Z | Waldick Aerospace | 2 | 87 | | REGION SITE NAME STATE FY REGION | | | | Z | Myers Property | 2 | 87 | | REGION SITE NAME STATE FY REGION | rontier Hard Chrome | | 88 | Z | Chemical Control | 2 | 87 | | Solidification/Stabilization | ommencement Bay/N | | 88 | RI | Davis Liquid Waste | - | 87 | | Solidification/Stabilization | ould | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 6 Bioecology Systems TX 88 2 4 General Refining GA 88 3 4 Davie Landfill FL 88 4 10 Western Processing/Phase II WA 88 4 2 Marathon Battery NY 88 5 3 Bruin Lagoon PA 88 6 4 Pepper's Steel & Alloy PI 88 6 4 Pepper's Steel & Alloy FL 88 6 5 Burrows Sanitation MI 88 7 5 Forest Waste Products MI 88 9 | acific Hide & Fur Re | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 6 Bioecology Systems TX 88 2 4 General Refining GA 88 3 4 Davic Landfill FL 88 4 10 Western Processing/Phase II WA 88 4 2 Marathon Battery NY 88 5 3 Bruin Lagoon PA 88 6 4 Pepper's Steel & Alloy FL 88 6 4 Sapp Battery Salvage FL 88 6 5 Burrows Sanitation MI 88 7 | elma Pressure Treatin | | 88 | MI | Forest Waste Products | s | 86 | | REGION SITE NAME STATE FY REGION SITE NAME STATE FY REGION SITE NAME STATE STA | Jorth Farm | 7 | | MI | Burrows Sanitation | S | 8 | | REGION SITE NAME STATE FY REGION | Aidwest Manufacturin | | 88 | Ŧ | Sapp Battery Salvage | 4 | 86 | | Solidification State Sta | rench Limited | | 88 | FL | Pepper's Steel & Alloy | 4 | 86 | | Solidification/Stabilization | rio Refining | | 88 | PA | Bruin Lagoon | ω | 86 | | REGION SITE NAME STATE FY REGION REGION STATE FY REGION PA 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88 3 88 3 88 4 88 4 88 4 88 4 88 4 88 5 88 5 6 88 5 6 88 5 6 88 6 6 88 6 6 88 6 6 | ailey Waste Disposal | | 88 | YN | Marathon Battery | 2 | 86 | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 6 Bioecology Systems TX 88 2 4 General Refining GA 88 3 4 Davie Landfill FL 88 4 10 Western Processing/Phase II WA 88 5 | ndustrial Waste Contro | | 88 | | | | | | Solidification/Stabilization | Aid-State Disposal Lai | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 6 Bioecology Systems TX 88 2 4 General Refining 4 GA 88 3 4 Davie Landfill FL 88 4 | elsicol Chemical | | 88 | WA | Western Processing/Phase II | 10 | 85 | | REGION SITE NAME STATE FY REGION REGION STATE FY REGION PA 88 2 88 2 88 2 88 2 88 2 88 2 88 3 8 4 6 General Refining GA 6 88 4 4 General Refining GA 88 4 4 6 6 6 6 6 6 6 6 | Themtronics | | 88 | FL | Davie Landfill | 4 | <u>&</u> | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 88 2 88 2 88 2 88 2 88 3 88 3 88 3 88 3 88 3 88 3 88 4 | lowood | | 88 | GA | General Refining | 4 | 85 | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 88 2 88 2 88 2 88 2 88 2 88 3 6 Bioecology Systems TX 88 3 88 3 | rown Wood Preservir | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 6 Bioecology Systems TX 88 2 6 Bioecology Systems TX 88 2 | ike Chemical | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 88 2 88 2 88 2 | Vlladin Plating | | 88 | ΤX | Bioecology Systems | 6 | 84 | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 88 2 88 2 | ork Oil | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION 3 Bruin Lagoon PA 88 2 | Marathon Battery | | 88 | | | | | | Solidification/Stabilization REGION SITE NAME STATE FY REGION | ove Canal | | 88 | PA | Bruin Lagoon | ω | 8 2 | | | SITE NAME | REGION | FY | STATE | | REGION | FY | | | n/Stabilization (cont | Solidificatio | | | Solidification/Stabilization | | | # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR # Solidification/Stabilization (continued) # Solidification/Stabilization (continued) | | 98 | | 8 | 98 | 8 | 8 | 8 | 90 | 8 | | 8 | | 8 | 98 | 8 | | 90 | | 90 | 98 | 90 | 8 | 8 | 8 | 90 | 90 | | | 89 | 89 | 89 | 89 | 89 | 89 | 89 | 89 | FY | |------------|-------------------------|------------------------|------------------------------------|--------------------|--------------------------------|---------------------------------|---------------------------|---------------------------|-----------------|--------------------------|-----------------------------------|---------------------------------|----------------------|------------------|------------------|----------|----------------------------|-------------|-------------------------------|---------------|------------------|--------------------|-------------|--------------------|----------------|-------------|------|------|------------------|--------------------------|------------------------|----------------------------|-----------------|--------------------|----------|---------|-----------| | | ∞ | | 7 | 7 | 6 | 6 | 5 | S | 5 | | 5 | | 4 | 4 | 4 | | 4 | | 4 | 4 | 4 | ω | w | ω | 2 | _ | | | 9 | 9 | 7 | 6 | 6 | 5 | Ŋ | 5 | REGION | | Aerospace) | Martin Marietta (Denver | (East Industrial Park) | Hastings Groundwater Contamination | Shenandoah Stables | Rogers Road Municipal Landfill | Jacksonville Municipal Landfill | Oconomowoc Electroplating | Springfield Township Dump | Wayne Waste Oil | National Wildlife Refuge | Sangamo/Crab Orchard | Contamination (Amendment) | Zellwood Groundwater | Yellow Wate Road | Schuylkill Metal | Disposal | Kassourf-Kimerling Battery | (Amendment) | Coleman-Evans Wood Preserving | Cabot/Koppers | 62nd Street Dump | Greenwood Chemical | C&R Battery | M.W. Manufacturing | Roebling Steel | New Bedford | | | Purity Oil Sales | Koppers (Oroville Plant) | Vogel Paint & Wax | Sheridan Disposal Services | Pesses Chemical | Auto Ion Chemicals | MIDCO
II | MIDCO I | SITE NAME | | | 60 | | on NE | MO | AR | AR | WI | MI | Z | | IL | | Ę | Ę | H | | ŦL | | FL | FL | Ę | ٧A | ٧A | PA | Ŋ | MA | | | CA | CA | IA | ΤX | XT | M | Z | Z | STATE | 1 | - | | | | | | - | | 91 | 91 | 91 | 91 | 91 | | 91 | 91 | | 91 | | | 90 | 90 | 90 | FY | | | | 91 5 | 91 4 | 91 4 | | 91 4 | 91 4 | | 91 4 | 91 4 | 91 4 | 91 4 | 91 4 | 91 3 | 91 3 | 91 3 | 91 3 | | | | 91 3 | 91 3 | 91 2 | | | | 91 2 | 91 2 | 91 1 | 91 1 | 91 1 | | | 90 10 | 90 9 | 90 8 | FY REGION | | | 5 | 5 | 4 | 4 | Packaging Co. | 91 4 Arlington Blending and | 91 4 Carolina Transformer | (Amendment) | 4 | 4 | 91 4 Maxey Flats Nuclear Disposal | 91 4 USAF Robins Air Force Base | 4 | w | ω | ω | 3 | w | w | ω | | ω | 2 | | | 2 | | | - | 91 1 Sullivan's Ledge | 91 1 Silresin Chemical | | | 10 | | | - | Solidification/Stabilization (continued) # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR Solidification/Stabilization (continued) | ì | 3 | 93 | 8 | 93 | 92 | 92 | 93 | 8 | 83 | | 8 | | 8 | 23 | 23 | 23 | 8 | 23 | g | 83 | 23 | ક્ષ | 23 | 23 | 92 | 23 | 23 | 8 | | | 91 | 91 | 91 | 91 | 91 | 91 | FY | |----------------------------|----------------------------------|---------------------------------|---------------------------------------|---------------------------------------|-------------------|-----------------------|------------------------------|----------------------|---------------------------|------------------------|---------------------------|------------------------|------------------------|-----------------------------------|---------------------------------|-----------------|-----------------------------|-----------------|---------|--------------------------|------------------------------------|-------------------------|-----------------|------------------------------|-----------------------|------------------------|--------------------------|----------------------------|---------|-------------------------------|--|---------------------------------|-------------------------|-------------------|---------------------|----------------------------------|-----------| | (| 2 | 6 | 6 | v | U) | υ, | 5 | S | 5 | | 4 | | 4 | 4 | 4 | 4 | 4 | 4 | ω | w | w | ω | ω | ω | 2 | 2 | 2 | | | | 9 | 9 | ∞ | 7 | 7 | 7 | REGION | | | Fourth Street Abandoned Refinery | Double Eagle Refinery | Cal West Metals | Tar Lake | Spickler Landfill | Savanna Army Depot | Peerless Plating | H. Brown Company | Electrovoice | (Amendment) | Whitehouse Waste Oil Pits | (Operable Unit 1) | Savannah River (USDOE) | Marine Corps Logistics Base | JFD Electronics/Channel Masters | Florida Steel | Ciba-Geigy (McIntosh Plant) | Agrico Chemical | Tonolli | Rhinehart Tire Fire Dump | Paoli Rail Yard | Fike Chemical | C & D Recycling | Abex | Preferred Plating | Facet Enterprises | Cosden Chemical Coatings | PSC Resources | | • | Valley Wood Preserving | FMC (Fresno Plant) | Anaconda Co. Smelter | Shaw Avenue Dump | Mid-America Tanning | IE Dupont de Nemours & Co., Inc. | SITE NAME | | Ç | QK
K | Q X | MN | M | WI | П | MI | MI | MI | | FL | | SC | GA | NC | FL | AL | FL | PA | VA | PA | WV | PA | VA | NY | NY | Z | MA | | | CA | CA | MT | IA | IA | : IA | STATE | | | - | - | | | | | | | | | | | | | | _ | - | | | | 93 | 93 | 93 | 93 | 93 | 93 | 93 | | 93 | | 93 | 93 | 93 | 93 | 93 | 93 | 93 | | | | 92 | | 93 | | 92 | 93 | 92 | ì | 3 | 23 | 92 | 93 | 92 | | 92 | FY | | | | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | 4 | | 4 | 4 | ω | 2 | 2 | 2 | - | | | | 10 | | 10 | | 10 | 9 | ∞ | (| × | ∞ | ∞ | ∞ | 6 | | 6 | REGION | | (Operation of the state of | (Onerable Unit 1) | Reeves Southeastern Galvanizing | Peak Oil/Bay Drum (Operable Unit 3)FL | Peak Oil/Bay Drum (Operable Unit 1)FL | Kalama Specialty | Hercules 009 Landfill | Geiger (C&M Oil) (Amendment) | Cedartown Industries | Contamination (Amendment) | Bypass 601 Groundwater | Contamination | Bypass 601 Groundwater | Anodyne | Rentokil Virginia Wood Preserving | Hunterstown Road | FMC-Dublin Road | American Cyanamid | Salem Acres | | | Engineering Lab (Operable Unit 22) | U.S. DOE Idaho National | (Amendment) | Pacific Hide & Fur Recycling | Metallurgical Complex | Bunker Hill Mining and | Rhone-Poulenc/Zoecon | Silver Bow CreekButte Area | Unit 4) | Pochy Flats (INDOE) (Operable | Portland Cement (Kiln Dust #2 & #3) UT | Denver Radium (Operable Unit 8) | Broderick Wood Products | Oklahoma Refining | (Operable Unit 1) | Gulf Coast Vacuum Services | SITE NAME | | | | Ħ | : 3)FL | 1)FL | SC | GA | SC | GA | | NC | | NC | | | PA | YN | Z | MA | | | ಆ | Ħ | | Ħ | | Ħ | CA | TM | (| 3 | #3)UT | ප | S | 읒 | | LA | STATE | STATE # TABLE A-2 (continued) REMEDIAL ACTIONS: ESTABLISHED TREATMENT TECHNOLOGIES BY FISCAL YEAR # Solidification/Stabilization (continued) Solidification/Stabilization (continued) | | 93 | 92 | 92 | 23 | 92 | 88 | 89 | 89 | ∞ | 88 | 87 | 85 | FY | | I | | | | | | | | | | H | |---|------------------|-------------------------------|-------------------------|-----------------------|----------------|----------------------|-------------------------|----------------------|--------------------|----------------------|------------------------|-------------------|-----------------|--------------|---|---|-----------------------------|-----------------------|--------|---|----------------------------------|---------------------------------|--|-----------------------|-----------| | | 3 4 | | 2 6 | | | | 9 9 | 9 9 | | | 7 3 | | REGION | | | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | FY | | | Kalı | Refi
Okl | Fou | Dou | Fike | Hov | Ray | Inte | Ark | Ben | Wes | Tria | | | | 10 | 10 | 9 | œ | ∞ | % | 6 | 6 | v | REGION | | | Kalama Specialty | Refinery
Oklahoma Refining | Fourth Street Abandoned | Double Eagle Refinery | Fike Chemical | Howe Valley Landfill | Raytheon, Mountain View | Intel, Mountain View | Arkansas City Dump | Bendix Flight System | West Virginia Ordnance | Triangle Chemical | SITE NAME | <u>Other</u> | | Umatilla Army Depot (Operable Unit 1)OR | American Crossarm & Conduit | Sacramento Army Depot | McColl | Unit 28)
Utah Power & Light/American Barrel UT | Rocky Mountain Arsenal (Operable | Weldon Spring Quarry/Plant/Pits | (Indianapolis Plant) Pab Oil & Chemical Services | Reilly Tar & Chemical | SITE NAME | | | SC | % | OK
K | OK | ٧V | ΚY | CA | CA | KS | PA | WV | XX | STATET | | | epot (Ope | m & Co | Depot | | ght/Ameı | Arsenal (| uarry/Pla | t)
cal Servi | mical | | | | Soil Aeration | Neutralization | Neutralization | Neutralization | Neutralization | Soil Aeration | Soil Aeration | Soil Aeration | Chemical | Soil Aeration | In situ 1 | Soil Aeration | STATETECHNOLOGY | | | erable Un | nduit | | | rican Barr | Operable | nt/Pits | ces | | | | | ration | ization | ization | ization | ization | ration | ration | ration | | ration | In situ Flamming | ration | LOGY | | | it 1)OR | WA | CA | CA | rel UT | CO | МО | LA | FL | STATE | | - | | | | | - | | | | | | | | | | | | | | | | | | | | FY | REGION | SITE NAME | THIS PAGE INTENTIONALLY LEFT BLANK • . # Appendix B Innovative Technologies at Superfund Removal Actions THIS PAGE INTENTIONALLY LEFT BLANK • #### TABLE B-1 # REMOVAL ACTIONS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY treatment technology has been selected. The columns of Table B-1 present the following information: Table B-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which innovative #### Region This column indicates the EPA Region in which the site is located. # Site Name, State, Action Memo Date This column identifies the site and the operable unit for which an innovative treatment technology was selected an action memorandum was signed by an EPA official An action memorandum documents the selection of remedy in the removal program. The date shown in this column is the date on which An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site ### Specific Technology general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be chosen. The second column describes the specific technology selected within a general category of innovative treatment. For example, within the ### Site Description technology for wood preserving sites technologies by site type. For example, by using the information in this column, one may determine the most frequently selected innovative This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of innovative ### Media (quantity) to include the maximum depth of the treatment to provide the reader with another parameter significant to the application. This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made ## **TABLE B-1 (Continued)** ## **Key Contaminants Treated** are not included. contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There
may be other #### Status in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the that treatment technology have been met and treatment has ceased. the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is operational if it is completely installed and it is now being operated as a treatment system; the remedy is completed if the goals of the ROD or decision document for This column indicates the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" date. One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever # Lead Agency, Treatment Contractor to manage the design or construction. Whichever agency or organization is responsible for managing the remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead agency has selected a its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers (USACE) may act for EPA will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/construction through The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible parties ### Contacts/Phone of the state RPM also is provided. Information on any other useful contacts is provided the EPA on-scene coordinator (OSC) responsible for the site. If a remedy is being managed by the state, the name and phone number This final column provides the names and telephone numbers of useful contacts for the site or technology. The first name listed is usually June 1994 Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 ## Bioremediation (Ex situ) | | | | 7 | 1 | | |--|---|---|--|---|--| | 7 | 6 | U1 | * | N | Region | | Scott Lumber, MO
Emergency Response
(Action Memo signed
07/10/87) | MacMillan Ring Free
Oil Company*, AR
Emergency Response
(Action Nemo signed
11/09/92) | Indiana Wood Treating,
IN
Emergency Response
(Action Memo signed
10/11/92) | Southeastern Wood
Preserving, MS
Emergency Response
(Action Memo signed
09/30/90)
See also Soil Washing | GCL Tie and Treating,
NY
Emergency Response | Site Name, State,
(ROD Date) | | Land treatment | Solid phase | Composting | Slurry phase
(preceded by
soil washing) | Composting | Specific
Technology | | Wood preserving | Petroleum refining | Wood preserving | Wood preserving | Wood preserving | Site Description | | Soil (16,000 cy) | Sediments (38,000
cy) | Soil (18,000 cy) | Soil (12,000 cy) | Soil (4,800 cy) | Media (Quantity) | | SVOCs (Phenols,
PAHs
Benzo(a)pyrene) | VOCs (BTEX), PAHS
(DAF Float) | PAHs (Creosote) | PAHs (Creosote) | PAHs (Creosote) | Key Contaminants
Treated | | Completed;
Operational
from 1987 to
Fall 1991 | Being
installed;
project
completion
date planned
Fall 1995 | Operational; Completion planned Fall 1994; After 6 months 8 of 9 compost piles below treatment target levels. | Completed;
September 1994 | In design;
Pilot study
completed in
Jan 1994 | Status# | | Federal lead/Fund Financed; Remediation Technologies | Federal lead/fund Financed; Reidel Environmental Services | Federal lead/Fund Financed; IT Corporation, CMC, Inc subcontractor | Federal
lead/Fund
Financed; OHM
Remediation
Services Corp | Federal
lead/Fund
Financed;
ERT/REAC | Lead Agency
and Treatment
Contractor (if
available) | | Bruce Morrison
913-551-5014 | Charles Fisher
214-655-2224 | Steve Faryan
312-353-9351 | Don Rigger
404-347-3931 | Joe Cosentino
908-906-6983
Carlos Ramos
212-264-5636 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 Bioremediation (Ex situ) (continued) | Bob Mandel
415-744-2290 | Federal
lead/fund
Financed;
Reidel
Environmental
Services | Completed;
Operational
from 7/87 to
8/88 | SVOCs (Phenois),
PAHs (Cresol) | Soil (1,500 cy) | Commercial waste
management | Land treatment | Poly-Carb, NV
Emergency Response
(Action Memo signed
05/14/87)
See also Soil Washing | 9 | |----------------------------|--|---|-----------------------------------|------------------|--------------------------------|------------------------|--|--------| | Contacts/Phone | Lead Agency
and Treatment
Contractor (if
available) | Status# | Key Contaminants
Treated | Media (Quantity) | Site Description | Specific
Technology | Site Name, State,
(ROD Date) | Region | June 1994 Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 ## Bioremediation (In situ) | | <u> </u> | T | | T | |---|--|---|---|--| | ٠ | • | 0 | | Region | | Roseville Drums, CA
Emergency Response
(Action Memo signed
03/03/88) | Gila River Indian
Reservation, AZ
Emergency Response
(Action Memo signed
07/31/84)
See also Chemical
Treatment | Baldwin Waste Oil, TX
Emergency Response
(Action Memo signed
07/01/92) | CSX McCormick Derailment Site, SC Emergency Response See also Soil Vapor Extraction | Site Name, State,
(ROD Date) | | In situ soil | In situ soil
Preceded by
chemical
treatment | In situ soil | In situ
groundwater | Specific
Technology | | Midnight dump on
dirt road | Drum storage/
disposal | Waste oil recycler | Derailment (30,000
gallon spill) | Site Description | | Soil (14 cy) | Soil (3,200 cy) | Soil (550 cy)
do⊌n to 1 foot | Groundwater down
to 40 feet deep | Media (Quantity) | | SVOCs
(Dichlorobenzene,
Phenols) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | VOCs (BTEX), PAHS
(TPH) | VOCs (BETX) | Key Contaminants
Treated | | Completed;
Fall 1988;
Operational
from 2/88 to
11/88 | Completed;
Operational
from 6/85 to
10/85 | Completed;
September 1994 | Operational | Status# | | Federal
Lead/Fund
Financed | PRP
lead/Federal
oversight | Federal lead/Fund Financed; Ecology & Environment, RSKERL (EPA), Reidel Environmental | PRP
lead/Federal
oversight;
Kemron | Lead Agency
and Treatment
Contractor (if
available) | | Brad Shipley
415-744-2287 | Richard Martin
414-744-2288 | Gary Guerra
214-665-6608 | Steve Spurlin
404-347-3931 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 ### **Chemical Treatment** | <u>,</u> | | | | | |---|--|---|--|--| | 5 | Ы | 2 | 2 | Region | | PBM Enterprises (Van
Dusen Airport
Service), MI
Emergency Response
(Action Memo signed
04/10/88) | Avtex Fibers, VA
Emergency Response
(Action Memo signed
11/14/89) | Zschiegner Refining
Company, NJ
Emergency Response | Vineland Chemical, NJ
Emergency Response
(Action Memo signed
09/28/92) | Site Name, State,
(ROD Date) | | Oxidation Sodium
Hypochlorite | Chemical
Treatment | Chemical
Treatment | Chemical
Treatment | Specific
Technology | | Silver recovery
facility | Rayon
manufacturing
facility/
wastewater
treatment | Precious metal
recovery | Pesticide
manufacturing/use/
storage | Site Description | | Solids Cyanide
tainted X-ray
chips | sludge (39,000
gl) | Solids (100 lb) | Solids (100 lb) | Media (Quantity) | | Organic cyanides | Organics (Carbon
disulfide) | Metals (Mercury) | Metals (Mercury) | Key Contaminants
Treated | | Completed;
Operational
from 5/85 to
10/85 | Completed;
August 1991 | Completed; Summer 1993; Operational from 2/93 to 6/93. Removal action completed. Other part going on. | Completed; December 1992;
This portion of the site is completed. Remedial action for the whole site will be done by April 1994 | Status# | | Federal
lead/fund
Financed;
American
Environmental
Service, Inc. | Federal
lead/Fund
Financed; OH
Materials | Federal
lead/Fund
Financed; Ensco | Federal
lead/fund
Financed; Ensco | Lead Agency
and Treatment
Contractor (if
available) | | Ross Powers
313-692-7661 | Vincent Zenone
215-597-3038
Bonnie Gross
215-597-0491 | Dilshad Perera
908-321-4356
Steve Brawley
(Ensco)
706-278-1195 | Don Graham
908-321-4345
Steve Brawley
(Ensco)
706-278-1195 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 Chamical Treatment (continued) | _ | |-------------------------| | റ | | | | = | | æ | | 3 | | _ | | Σ. | | × | | 8 | | - | | ≓ | | ത് | | Ä | | = | | = | | 3 | | ≖ | | ¥ | | 3 | | • | | _ | | $\overline{\mathbf{c}}$ | | × | | \mathbf{z} | | 3 | | = | | ₹. | | Ŧ. | | 5 | | Œ | | Ő. | | = | | _ | | | | | 70 | |---|--|---|--| | | • | | Region | | Stanford Pesticide #1,
AZ
Emergency Response
(Action Memo signed
(04/20/87) | Gila River Indian Reservation, AZ Emergency Response (Action Memo signed 07/31/84) See also Bioremediation (In Situ) | Mouat Industries*, MT
Emergency Response
(Action Memo signed
09/20/91) | Site Name, State,
(ROD Date) | | In situ | Reduction using
sodium hydroxide | Reduction using sulfuric acid and ferrous sulfate | Specific
Technology | | Pesticide
manufacturing/use/
storage, Farm
equipment storage | Drum storage/
disposal | Metal ore mining and smelting | Site Description | | Soil (200 cy) | Soil (3,200 cy) | Soil (47,000 cy) | Media (Quantity) | | Biocides (Methyl
Parathion) | Biocides
(Toxaphene, Ethyl
and Methyl
Parathion) | Metals (Chromium
IV) | Key Contaminants
Treated | | Completed; Operational from 7/87 to 9/87 | Completed;
Operational
from 4/85 to
10/85 | Operational; Completion planned Spring 1994; Operation started June 1993 | Status# | | Federal
lead/Fund
Financed;
Crosby and
Overton | Federal
lead/Fund
Financed | PRP
lead/Federal
oversight;
Baker
Environmental | Lead Agency
and Treatment
Contractor (if
available) | | Dan Shane
415-744-2286 | Richard Martin
414-744-2288 | Ron Bertran
406-449-5720 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 | Ü | J | |---|----| | d | Ď | | ¢ |) | | = | 7 | | ē | 5 | | Ξ | Ì, | | Ξ | 3 | | 9 | þ | | S | : | | S | 2 | | = | 3 | | | | | 7 | 2 | Region | |---|---|--| | Crown Plating, MO
Emergency Response
(Action Memo signed
08/29/89) | Signo Trading/Mt.
Vernon, NY
Emergency Response
(Action Memo signed
12/19/86) | Site Name, State,
(ROD Date) | | Dechlorination | Dechlorination | Specific
Technology | | Electroplating | Waste management
facility warehouse | Site Description | | Liquid (55 gl) | Sludge (15 gl) | Media (Quantity) | | Biocides (silvex;
2,4,5 TP) | Dioxins (2,3,7,8
TCDD-laden
herbicides) | Key Contaminants
Treated | | Completed;
Operational
from 10/89 to
12/89 | Completed;
Completed in
1987 | Status# | | Federal
lead/Fund
Financed | Federal
lead/Fund
Financed;
Galson Research
Corp
(subcontractor
to OHM) | Lead Agency
and Treatment
Contractor (if
available) | | Mark Roberts
913-236-3881 | Charles
Fitzsimmons
908-321-6608 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 In situ Vitrification | 312-886-4246 | lead/Fund
Financed;
Geosafe Corp. | First full-scale application of in situ vitrification at a hazardous waste site | Dioxins, Metals
(Mercury) | | chemical facility | Vitrification | Enterprise), MI
Emergency Response
(Action Memo signed
09/21/90) | | |----------------|--|---|------------------------------|------------------|-------------------|------------------------|---|--------| | Len Zintak | Federal | Completed: | Biocides, | Soil (3,000 cy) | Agricultural | In situ | Parsons Chemical (ETM | 5 | | Contacts/Phone | Lead Agency
and Treatment
Contractor (if
available) | Status# | Key Contaminants
Treated | Media (Quantity) | Site Description | Specific
Technology | Site Name, State,
(ROD Date) | Region | ## Soil Vapor Extraction | | | | | | |--|---|--|--|--| | œ | 4 | 4 | 4 | Region | | Mystery Bridge
Road/Highway 20, OU
2*, WY
Emergency Response
(Action Memo signed
See also Other
Technologies | Hinson Chemical, SC
Emergency Response
(Action Memo signed
11/28/88) | CSX McCormick Derailment Site, SC Emergency Response See also Bioremediation (In Situ) | Basket Creek Surface
Impoundment*, GA
Emergency Response
(Action Memo signed
04/11/91) | Site Name, State,
(ROD Date) | | Soil vapor
Extraction | Soil vapor
extraction with
air flushing | Soil vapor
extraction with
air flushing | Soil vapor
extraction ex
situ, used on a
soil pile | Specific
Technology | | Natural gas
compressor station | Waste reclaiming facility | Derailment (30,000
gallon spill) | Surface
impoundment used
for disposal of
solvents | Site Description | | Soil (160,000 cy)
approximately 5
acres down to 20
feet | Soil (60,000 cy)
to a depth of 50
feet | Soil (200,000 cy)
down to 8 feet
deep | Soil (2,000 cy) | Media (Quantity) | | VOCs (Benzene) | Vocs | VOCs (BETX) | VOCs (TCE, PCE,
MEK, MIBK,
Toluene, Xylene,
Benzene) | Key Contaminants
Treated | | Operational | Completed;
March 1992;
Operational
from 12/88 to
3/92 | Completed;
Operation
completed
Winter 1993 | Completed | Status# | | PRP
lead/Federal
oversight;
Adrian Brown
Consultants | Federal
lead/fund
Financed; OH
Materials | PRP
lead/Federal
oversight;
Midwest
Research
Institute | Federal
lead/Fund
Financed; OHM | Lead Agency
and Treatment
Contractor (if
available) | | Lisa Reed
303-293-1515 | Fred Stroud
404-347-3136 | Steve Spurlin
404-347-3931 | Don Rigger
404-347-3931
Extn-6140 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 ### Soil Washing | Region Site Name, State, (ROD Date) A Southeastern Wood Emergency Response Sea also Bioremediation (Ex Situ) Poly-Carb, W Emergency Response (Action Hemo signed Situ) Poly-Carb (Action Hemo signed Situ) Soil Washing Emergency Response (Action Hemo signed Situ) Soil Washing Situ) Soil Washing Emergency Response (Action Hemo signed Situ Mashing Emergency Response (Action Hemo Signed Situ) Soil Washing Situ Mashing Emergency Response (Action Hemo Signed Situ Mashing Management Mana | | <u> </u> | <u></u> |
--|--|---|--| | Name, State, Specific Description Date) Name, State, Specific Technology Site Description Media (Quantity) Date) Name, State, Specific Technology Site Description Media (Quantity) Treated Soil washing Completion (if | • | * | Region | | Site Description Media (Quantity) Federal (Creosote) Nood preserving Sludge (quantity unknown), Solids (Creosote) Completion planned Spring Financed; OHM Remediation Services Corp. Commercial waste Soil (1,500 cy) SVOCs (Phenols), PAHs (Cresol) PAHs (Cresol) PAHs (Cresol) Federal Remediation Services Corp. Completed; Federal Lead/Fund Financed; Paths (Cresol) Federal Remediation Services Corp. Svocs (Phenols), Completed; Reidel Financed; Reidel Environmental Services | Poly-Carb, NV Emergency Response (Action Memo signed 05/14/87) See also Bioremediation (Ex Situ) | Southeastern Wood
Preserving, MS
Emergency Response
(Action Memo signed
09/30/90)
See also
Bioremediation (Ex | Site Name, State,
(ROD Date) | | Media (Quantity) Sludge (quantity unknown), Solids (Creosote) Soil (1,500 cy) Soil (1,500 cy) Media (Quantity SVOCs, PAHs (Creosote) Soil (1,500 cy) SvoCs (Phenols), PAHs (Cresol) (Cresol | Soil Washing | Soil washing (sand removal, followed by bioremediation of fines | Specific
Technology | | Key Contaminants Key Contaminants Status# Lead Agency and Treatment Contractor (if Contractor (if available) SVOCs, PAHs (Creosote) Operational; PAHs (Cresol) SVOCs (Phenols), PAHs (Cresol) Completed; PAHs (Cresol) SVOCs (Phenols), PAHs (Cresol) SVOCs (Phenols), PAHs (Cresol) Completed; PAHs (Cresol) Services Federal Lead/Fund Financed; Reidel Environmental Services | Commercial waste
management | Wood preserving | Site Description | | Status# Lead Agency and Treatment Contractor (if Contractor (if available) Operational; Federal Completion Planned Spring Financed; OHM 1994 Completed; Operational Completed; Federal Operational Financed; Reidel Environmental Services Services | Soil (1,500 cy) | Sludge (quantity
unknown), Solids
(1,000 cy) | Media (Quantity) | | Lead Agency and Treatment Contractor (if available) Federal lead/Fund Remediation Services Corp. Federal lead/Fund Financed; Reidel Environmental Services | | SVOCs, PAHs
(Creosote) | Key Contaminants
Treated | | T P ₹ Cif | Completed;
Operational
7/87 to 8/88 | Operational;
Completion
planned Spring
1994 | Status# | | Contacts/Phone Don Rigger 404-347-3931 Bob Mandel 415-744-2290 | Federal lead/fund Financed; Reidel Environmental Services | Federal lead/Fund Financed; OHM Remediation Services Corp. | Lead Agency
and Treatment
Contractor (if
available) | | | Bob Mandel
415-744-2290 | Don Rigger
404-347-3931 | Contacts/Phone | Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 citic Information By Technology Through FY Thermal Desorption | 10 Drexler - RAMCOR*, WA Emergency Response (Action Memo signed | 4 FCX-Washington Site,
NC
Emergency Response
(Action Memo signed
12/04/91) | Region Site Name, State, (ROD Date) | |---|--|--| | AMCOR*, WA
esponse
o signed | d e, | State, | | Thermal
Desorption | Thermal
Desorption | Specific
Technology | | Waste oil recycler | Pesticide
manufacturing/use/
storage | Site Description | | Soil (3,000 cy) | Soil (15,000 cy) | Media (Quantity) | | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | Biocides
(Chlordane,
Methoxyclor, DDT,
DDE) | Key Contaminants
Treated | | Completed; Operational from 7/92 to 8/92 | Being
installed | Status# | | Federal
lead/fund
Financed; Four
Seasons | Federal
Lead/fund
Financed | Lead Agency
and Treatment
Contractor (if
available) | | Chris Field
206-553-1674 | Paul Peronard
404-347-6121 | Contacts/Phone | June 1994 # Table B-1 Removal Actions: Site-specific Information By Technology Through FY 1993 Other | Lisa Reed
303-293-1515 | PRP
lead/federal
oversight;
Adrian Brown
Consultants | Operational | VOCs (Benzene) | Soil (160,000 cy) | Natural gas
compressor station | Air sparging | Mystery Bridge
Road/Highway 20, OU
2*, WY
Emergency Response
See also Soil Vapor
Extraction | œ | |---------------------------|--|-------------|-----------------------------|-------------------|-----------------------------------|------------------------|--|--------| | Contacts/Phone | Lead Agency
and Treatment
Contractor (if
available) | Status# | Key Contaminants
Treated | Media (Quantity) | Site Description | Specific
Technology | Site Name, State, (ROD Date) | Region | THIS PAGE INTENTIONALLY LEFT BLANK ٠ # Appendix C Innovative Technologies at Actions Under Other Federal Programs THIS PAGE INTENTIONALLY LEFT BLANK - - #### TABLE C-1 # OTHER FEDERAL PROGRAMS: SITE-SPECIFIC INFORMATION BY INNOVATIVE TREATMENT TECHNOLOGY innovative treatment technology has been selected. The columns of Table C-1 present the following information: Table C-1 is the principal part of this chapter. It contains the most detailed, site-specific information for removal sites for which an #### Vegrou This column indicates the EPA Region in which the site is located. Site Name, State An asterisk (*) in this column indicates that a treatability study has been completed for this technology at the particular site This column identifies the site and the operable unit for which an innovative treatment technology was selected ### Specific Technology within the general category of bioremediation, the specific technologies of land treatment or slurry-phase bioremediation may be The second column describes the specific technology selected within a general category of innovative treatment. For example, ### Site Description selected innovative technology for wood preserving sites innovative technologies by site type. For example, by using the information in this column, one may determine the most frequently This column provides information on the industrial source of the contamination at the site and allows analysis of the selection of ### Media (quantity) application. This column provides information on the media and quantity of material to be treated. If a treatment is used in situ, an effort has been made to include the maximum depth of the treatment to provide the reader with another important parameter regarding the ## **TABLE C-1 (Continued)** ## **Key Contaminants Treated** The major contaminants or contaminant groups targeted by the treatment technology are shown in this column. There may be other contaminants as well that will be treated. Other contaminants that may be present, but that are not being addressed by the listed technology, are not included. #### Smire the lead agency has signed a contract for the construction work needed to set up the remedy. The remedy is **operational** if it is complete and it is now being operated as a treatment system; the remedy is **completed** if the goals of the ROD or decision document services of a design firm, or collecting information (such as conducting a treatability study) needed in the design stage. If a project is signed but design has not begun. During predesign, EPA may be negotiating with the potentially responsible parties, procuring the for that treatment technology
have been met and treatment has ceased. in design, the engineering documents needed to contract for and build the remedy are being prepared. If a remedy is being installed, This column gives the status of the application of the innovative treatment technology. Predesign indicates that the ROD has been One purpose of this column is to identify opportunities for vendors to become involved in the next phase of the projects. Whenever possible, the season and year that the current phase will end is given. This information is identified as the "completion planned" # Lead Agency, Treatment Contractor agency has selected a contractor. remedy, the contractor responsible for the actual installation and operation of the innovative technology also is identified, if the lead construction through its contractors, the state may manage the project with Superfund dollars, or the U.S. Army Corps of Engineers parties will conduct the remedy with EPA/State oversight (PRP lead). If a remedy is Fund lead, EPA may manage the design/ (USACE) may act for EPA to manage the design or construction. Whichever agency or organization is responsible for managing the The "lead" indicates whether federal dollars are to be used to implement the remedy (Fund lead) or the potentially responsible ### Contacts/Phone usually the project manager or point of contact responsible for the site. If a remedy is being managed by the state, the name and This final column gives the names and telephone numbers of useful contacts for the site or technology. The first name listed is Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 | 0 | |-------------| | oremediatio | | qiatio | | | | SITU) | | | | | | 5 | ٧ | ٥ | œ | 0 | Region | |--|--|--|---|---|--| | ft. Wainwright*, AK | Marine Corps.,
Nountain Warfare
Center, Bridgeport, CA | Ft. Ord Marina,
Fritzche AAF Fire
Drill Area, CA | Former Glasgow AFB, MT | Matagorda Island Af
Range, TX | Site Name, State,
(ROD Date) | | Land treatment
Biopile | Bioremediation (Ex Situ) Heap pile bioreactor with aeration and irrigation | Land treatment | Land treatment | Solid phase | Specific
Technology | | Federal facility,
fuel pipeline,
aboveground
storage tank | Federal facility | Fire drill area | UST removal site | Federal facility | Site Description | | Soil (4,500 cy) | Soil (7,000 cy) | Soil (4,000 cy) | Sail (2,000 cy) | Soil (500 cy) | Media (Quantity) | | PAHs (Diesel) | PAHs (Petroleum
hydrocarbons,
Diesel) | VDCs (TCE, MEK),
PAHs (Petroleum
hydrocarbons) | VOCs, PAHs
(Petroleum
hydrocarbons) | VOCs (ВТЕХ), РАНS
(ТРН, Tar) | Key Contaminants
Treated | | Operational | Completed;
1989;
Pilot-scale
project | Completed;
Winter 1991 | Being installed; Installation completion planned Fall 1994; Design Completed. Expected construction completion date Fall 1994 | Completed;
Operational
from 10/92 to
3/93 | Status# | | Army
(USACE)/DoD
Financed - IRP
Program;
Laidlaw | State
Lead/Western
Division of
NFEC; ENSR | Army
(USACE)/DoD
Financed - IRP
Program | ARMY
(USACE)/DoD
Financed FUDS
Program | Army
(USACE)/DoD
Financed - IRP
Program; CCC,
Inc. | Lead Agency
and Treatment
Contractor (if
available) | | Diane Soderland
907-271-5083
David Williams
(USACE)
907-753-5657 | Bill Major
805-982-1808 | Gail Youngblood
408-242-8017 | Martin
Rasmussen
(USACE, Omaha)
402-221-3827
Steve Ott
(USACE, Omaha)
402-221-7670 | Jack Otis
409-766-3161
Domingo Galindo
(USACE)
512-884-3385 | Contacts/Phone | Bioremediation (In situ) | ۰ | • | œ | 6 | 4 | Region | |--|---|--|--|---|--| | Davis Monthan AFB, AZ
See also Soil Vapor
Extraction | Aua Fuel Farm, Aua
Village, American
Samoa, | Ft. Carson*, CO
See also Soil Vapor
Extraction | Kelly AFB, Site 1100*,
TX
See also Soil Vapor
Extraction | Savannah River DOE, M
Area Settling Basin,
SC
See also Soil Vapor
Extraction, Other
Technologies | Site Name, State,
(ROD Date) | | In situ soil | Bioremediation
(In Situ) | In situ soil
Bioventing | In situ soil
Bioventing | In situ
groundwater | Specific
Technology | | Federal facility
JP-4 Pump House | Fuel farm | UST remediation | Federal facility
(hazardous waste
facility) | Leaking solvent
line | Site Description | | Soil (440 cy) 400 ft by 15 ft down to 2 ft deep | Soil (quantity
unknown) | Soil down to 80
feet | Soil (8,900 cy) | Groundwater | Media (Quantity) | | PAHs (Petroleum
hydrocarbons) | PAHs (Diesel
fuel) | VOCs (gasoline) | VOCs (JP-4) | VOCs (TCE, PCE),
Pahs ((DNAPLs)) | Key Contaminants
Treated | | Completed; Operational from 7/91 to 3/92 | Operational;
Completion
expected for
Spring 1996 | Operational;
completion
date unknown | Operational; Completion planned 1994; full scale since 1993; completion in 2 years | Operational;
Operation
began in 1990 | Status# | | USACE/Air Force | Army
(USACE)/DoD
Financed - FUDS
Program | Army
(USACE)/DoD
Financed - IRP;
Woodward Clyde | Kelly AFB/Air
Force Funded;
SAIC | DOE Lead/DOE
funding;
Westinghouse
Savannah River
Company | Lead Agency
and Treatment
Contractor (if
available) | | Mike
Steffansmeyer
(USACE, Omaha)
402-221-7163 | Helene Takemoto
(USACE, pac
div)
808-438-6931/
1776 | John Cloonan
(USACE)
719-526-8004 | Steve Escude
210-925-1812 | Nate Ellis
(DOE)
803-952-4846
Brian Lowry
(WSRC)
803-725-5181 | Contacts/Phone | June 1994 ## Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### Bioremediation (In situ) (continued) | = | • | ٥ | Region | |--|--|--|--| | · | | | i on | | Naval Communication
Station, Scotland, | Seal Beach Navy Weapons Station IR Site 14, CA See also Soil Vapor Extraction | Davis Monthan AFB,
Site 35, AZ
See also Soil Vapor
Extraction | Site Name, State,
(ROD Date) | | In situ soil | Anaerobic | In situ soil
Bioventing | Specific
Technology | | Diesel fuel
storage tanks and
piping | Federal facility
Naval weapons
station | JP-4 pump house | Site Description | | Soil apprx.8,608
square feet (800
sq meters) | Soil (1,700 cy) 100 yd diameter down to 6 feet deep | Soil (63,000 cy) | Media (Quantity) | | SVOCs (No.2
Diesel) | VOCs (BTEX), PAHs
(Petroleum
hydrocarbons) | VOCs (JP-4), PAHs | Key Contaminants
Treated | | Completed;
Fall 1985 | Operational;
Operations
started in
1989 | Being
installed;
Pilot test
Winter 1994 | Status# | | Naval Civil
Engineering
Lab/DoD
Federal;
Polybac | Navy/DoD
Financed - IRP
Program; Naval
Facility
Engineering
Center
(Stanford
Univ.) | USACE/ Air
Force funded
(State
Oversite);
Engineering
Science | Lead Agency
and Treatment
Contractor (if
available) | | Deh Bin Chan
805-982-4191 | Laura Duchnak
(Navy RPM)
619-532-3152
Steve McDonald
(Navy)
310-594-7655 | Mike Steffanmeyer (USACE, Omaha) 402-221-7163 Karen Odom (USAF) 602-750-5595 Doug Dowrey (ES) 303-831-8100 | Contacts/Phone | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### Dechlorination | D. B. Chan
(Navy)
805-982-4191 | Navy; Guam EPA D. B. Chan Oversite; IT (Navy) 805-982-419 | Operational;
Completion
planned Summer
1995 | PCBs | Soil (5,500 cy) | Federal facility | Dechlorination | U. S. Public Works
Center, Guam, GU | 9 | |--------------------------------------|--|--|-----------------------------|------------------|------------------|------------------------|--|--------| | Contacts/Phone | Lead Agency
and Treatment
Contractor (if
available) | Status# | Key Contaminants
Treated | Media (Quantity) | Site Description | Specific
Technology | Site Name, State,
(ROD Date) | Region | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 #### Soil Vapor Extraction | ٥ | 0 | * | W | Region | |---|--|---|---
--| | Holloman AFB, Main POL
Area, NM | Holloman AFB, BX
Service Station, NM | Savannah River DOE, M
Area Settling Basin,
SC
See also
Bioremediation (In
Situ), Other
Technologies | Langley AFB, IRP Site
28, VA | Site Name, State, (ROD Date) | | Soil vapor extraction Using passive vent and extraction wells. | Soil vapor
extraction may
supplement with
air injection | Soil vapor
extraction with
air flushing
with groundwater
sparging | Soil vapor
extraction with
air flushing | Specific
Technology | | Former above ground fuel storage tank area (JP-4 and AV Gas spill) (SS-02/05) | Service station
(SS - 17) | Leaking solvent
line | Federal facility | Site Description | | Soil (quantity
unknown) | Soil 2 to 3 acres
down to 10 feet | Soil (450,000
lb), Groundwater
down to 200 feet | Soil 1.5 acres
down to 5feet
deep | Media (Quantity) | | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | VOCs (Benzene),
PAHs (Petroleum
Hydrocarbons) | VOCs (TCE, PCE) | VOCs (Gasoline) | Key Contaminants
Treated | | In design; Design completed; Installation and remedation to start in Spring 1994. | In design; Design completion planned Winter 1993; Currently conducting pilot test. | Operational;
Operation of
the SVE system
began in 1990 | Being installed; Installation completion planned Summer 1994 | Status# | | USACE/Air Force
IRP Program; IT | USACE/Air Force
IRP Program;
Ensearch
Environmental,
Walk Haydel &
Associates - | DOE Lead/DOE
Funding;
Westinghouse
Savannah River
Company | USACE/Air Force
Funded | Lead Agency
and Treatment
Contractor (if
available) | | Ron Stirling
(USACE)
402-221-7664 | Ron Stirling
(USACE)
402-221-7664 | Nate Ellis
(DOE)
803-952-4846
Brian Looney
(WSRC)
803-725-5181 | John Farhat
(USACE, Omaha)
402-221-7654
Dan Musel
(Langley AFB)
804-764-3987 | Contacts/Phone | Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1 #### Soil Vapor Extraction (continued) | • | ۰ | œ | ٥ | Region | |--|--|--|---|--| | Davis Monthan AFB,
Site 35, AZ
See also
Bioremediation (In
Situ) | Davis Monthan AFB, AZ
See also
Bioremediation (In
Situ) | Ft. Carson*, CO
See also
Bioremediation (In
Situ) | Kelly AFB, Site 1100*,
TX
See also
Bioremediation (In
Situ) | Site Name, State,
(ROD Date) | | Soil vapor extraction with bioventing | Soil vapor extraction with bioventing | Soil Vapor
Extraction | Soil Vapor
Extraction | Specific
Technology | | JP-4 pump house | Federal facility
JP-4 Pump House | UST remediation | Federal facility
(hazardous waste
facility) | Site Description | | Soil (63,000 cy) | Soil (63,000 cy) | Soil down to 80 feet | Soil (8,900 cy) | Media (Quantity) | | VOCs (JP-4,
Benzene) | VOCs (JP-4,
Benzene) | VOCs (gasoline) | VOCs (JP-4) | Key Contaminants
Treated | | In design; Design completion planned Fall 1993 | In design; Design completion planned Fall 1993; Completion delayed because awaiting funding | Operational;
completion
date unknown | Operational; Vacuum extraction done before with bioventing, information the same. Completion in | Status# | | USACE/Air Force
Funded;
Montgomery
Watson - Design
Contractor | USACE/Air Force
Funded;
Montgomery
Watson - Design
Contractor | Army
(USACE)/DoD
Financed - IRP;
Woodward Clyde | Kelly AFB/Air
Force Funded;
SAIC | Lead Agency
and Treatment
Contractor (if
available) | | Mike
Steffansmeier
(USACE, Omaha)
402-221-7163 | Mike
Steffansmeier,
USACE Omaha
402-221-7163
Karen Odom Air
Force
602-750-5595 | John Cloonan
719-526-8004 | Steve Escude
210-925-1812 | Contacts/Phone | Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Table C-1 Soil Vapor Extraction (continued) | v | 9 | 9 | Region | |--|---|--|--| | Seal Beach Navy Weapons Station IR Site 14, CA See also Bioremediation (In Situ) | McClellan AFB OUD, CA | Luke AFB, AZ | Site Name, State,
(ROD Date) | | Soil vapor extraction with combustion of air emissions | Soil Vapor
Extraction | Soil vapor extraction with air flushing and thermal oxidation of off gases | Specific
Technology | | Federal facility
Naval weapons
station | Former fuel and
solvent disposal
site | Air Force fire
training pits | Site Description | | Soil (quantity
unknown) | Soil (12,000 cy) | Soil (35,000 cy) | Media (Quantity) | | VOCs (BTEX) | VOCs (TCA, TCE,
1-1-DCE) | VOCs (2-hexanone,
2-butanone,
4-methyl
2-pentanone,
BTEX) | Key Contaminants
Treated | | In design;
Operation to
start in 1994 | Operational;
Completion
planned Winter
1994; 5 years
to complete. | Completed; Operational from 11/91 to 5/92. Will conduct long-term monitoring afterward | Status# | | Navy/DoD
Financed - IRP
Program; Jacobs
Engineering | Air Force; CH2M
Hill | USACE
Lead/State
Oversight;
Envirocon | Lead Agency
and Treatment
Contractor (if
available) | | Jeff Kidhell
(Navy)
619-532-2058
Steve McDonald
(Navy)
310-594-7655 | Steve Hodge (McClellan AFB) 916-643-0830 Elaine Anderson (McClellan AFB) 916-643-0830 Joseph Danko (CH2M Hill) 503-752-4271 | Jerome Stolinsky (USACE) 402-221-7170 Dan McCafferty (Envirocon) 406-523-1150 | Contacts/Phone | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 Soil Washing | Uī | U | Region | |---|--|--| | Twin Cities Army
Ammunition Plant, MN | Saginaw Bay Confined
Disposal Facility, MI | Site Name, State,
(ROD Date) | | Soil Washing | Soil Washing | Specific
Technology | | Munitions
manufacturing/
storage | Confined disposal
island | Site Description | | Soil (quantity
unknown) | Sediments (150
cy) | Media (Quantity) | | Metals (Lead,
Mercury) | PCBs | Key Contaminants
Treated | | Operational;
Completion
planned Summer
1994 | Completed;
Summer 92 | Status# | | Federal Facility/State oversight; Wenck Associates, Inc. | COE
lead/Federal
Oversite;
Bergmann, USA | Lead Agency
and Treatment
Contractor (if
available) | | Peter Rissel
(US Army Env.
Center)
410-671-1504
Martin McCleery
(Twin Cities
AAP) | Jim Galloway
(COE)
313-226-6760
Rick Traver
(Bergmann)
203-684-6844 | Contacts/Phone | Table C-1 Other Federal Program Actions: Site-specific Information By Technology Through FY 1993 June 1994 . Other | See
Bii
Si' | 4 Say | | kegion 31 | | | |--|--|------------|----------------|------------------|---| | See also Bioremediation (In Situ), Soil Vapor Extraction | Savannah River DOE, M
Area Settling Basin, | , | (ROD Date) | to Namo State | | | | air sparging | | Technology | Specific | | | | Leaking solvent
line | | | Site Description | | | | Groundwater | | | Media (Quantity) | | | | VOCs (TCE, PCE) | | reated | Key Contaminants | | | | Operational;
Operational
since 1990 | | | Status# | | | Company | DOE lead/DOE funding; Westinghouse | available) | Contractor (if | Lead Agency | 7 | | (WSRC)
803-725-5181 | Nate Ellis
(DOE)
803-952-4846
Brian Lowry | | | Contacts/Phone | | THIS PAGE INTENTIONALLY LEFT BLANK • Appendix D Summary of Status Report Updates, Changes, Deletions THIS PAGE INTENTIONALLY LEFT BLANK • #### Summary of Updates/Changes/Deletions first edition of the report published in January 1991 through this 5th edition) is described below to allow tracking of specific projects from edition to existing innovative projects. The information added from ROD's from previous fiscal years that was deleted, or changed in each edition (from the Each edition of this report has added new information on the applications of innovative technologies at Superfund sites and has updated the status of . # Additions, Changes, and Deletions from the 1st edition report (January 1991) to the 2nd edition report (September 1991). | 200-555-6519 | commercial availability was | | | | | (09/13/69) | | |---|---|----------------|---|-------|-----------------------|---|----------| | Christine Psyk | Technology dropped because | | Yes | | In Situ Vitrification | Northwest Transformer, WA | 10 | | John Meyer
214-655-6735 | Reclassified technology | Dechlorination | | | Chemical Treatment | Sol Lynn/Industrial
Transformers, TX (03/25/88) | 6 | | Caroline Kwan
212-264-0151 | Reclassified technology | Soil Washing | | | Chemical Extraction | GE Wiring Services, PR (09/30/88) | 2 | | Lorenzo Thantu
617-223-5500 | Reclassified technology | Dechlorination | | | Chemical Treatment | Re-Solve, MA (09/24/87) | , | | Miko Fayon
212-264-4706 | Misinterpretation of ROD during ROD analysis | | Yes (changed to soil vapor extraction in 3rd edition) | | Thermal Desorption | SMS Instruments (Deer Park), NY (09/29/89) | 2 | | Kate Lose
215-597-0910 | During remedial design, sampling indicated VOCs were no longer present in the soils. Heavy metals remained at the surface. An ESD was issued on 12/92. Remedy will consist of capping the site. | | Yes | | In Situ Soil Flushing | Harvey-Knott Drum, DE (09/30/85) | ω | | Andy Palestini
215-597-1286
Philip Rotstein
215-597-9023 | No further action. Risk re-
evaluated and was determined that
risk was not sufficient for remedial
action. | | Yes | | Bioremediation | Leetown Pesticides, WV (03/31/86) | ω | | Contacts/Phone | Comments | Changed to | Deleted | Added | in 1st Edition) | Site Name, State (ROD Date) | Region | | | | | 2nd Edition | | Technology (Listed | | | Note: The 2nd edition report also added information on 45 innovative treatment technologies selected for remedial actions in FY 1990 RODs and 18 innovative treatment technologies used in removal actions. Additions, Changes, and Deletions from the 2nd edition report (September 1991) to the 3rd edition report (April 1992). | ROD was misinterpreted during ROD analysis | |--| | | | l l | | l | | Thermal Desorption | | Incineration | | | | Thermal Desorption | | | | l | | 8 | | | Note: The 3rd edition report also added information on 70 innovative treatment technologies selected for remedial actions in FY 1991 RODs. | Bob Mandel
415-744-2290 | ion Reclassified technology | Bioremediation
(in situ) | | | Bioremediation (ex situ) | Poly Carb, NV (Removal) | 9] | |----------------------------|-----------------------------|-----------------------------|-------------|-------|--------------------------|-----------------------------|--------| | Contacts/Phone | Comments | Changed to | Deleted | Added | in 2nd Edition) Added | Site Name, State (ROD Date) | Region | | | | | 3rd Edition | | Tacknown I istal | | | Additions, Changes, and Deletions from the 3rd edition report (April 1992) to the 4th edition report (October 1992). | Chip Humphries 503-326-2678 | Missed during original ROD analysis | | | Soil Washing | Soil Washing | Gould Battery (03/31/88) | 10 | |-------------------------------|--|-----------------------------|-------------|-----------------------|--------------------------|---|--------| | l | Mistakenly deleted from report | | Yes | | Soil Vapor
Extraction | Teledyne Semiconductors, CA (03/22/91) | 9 | | | Reclassified technology | Bioremediation (ex situ) | | | Bioremediation (in situ) | Poly Carb, NV (Removal) | 9 | | Ursula Lenno
214-655-6735 | Remedy added by ROD amendment | | | In Situ
Flushing | Soil Washing | Koppers/Texarkana, TX (09/23/88) | 6 | | John Meyer
214-655-6735 | Discontinued due to implementation difficulties | | Yes | | Dechlorination | Sol Lynn/Industrial Dechlorination
Transformers, TX (03/25/88) | 6 | | Darrel Owens
312-886-7089 | Issued an ESD in August 1991 to change remedy to Thermal Desorption or Incineration. Incineration was chosen because it was less expensive | Incineration in 5th edition | Yes | | Thermal Desorption | University of Minnesota, MN
(06/11/90) | 5 | | Caroline Kwan
212-264-0151 | | Soil Washing | | | Thermal Desorption | GE Wiring Services PR (09/30/88) | 2 | | Tom Graff
816-426-2296 | Missed during original ROD analysis | | | Thermal
Desorption | None | Lipari Landfill Marsh Sediment, NJ (07/11/88) | 2 | | ļi | Comments | Changed to | Deleted | Added | in 3rd Edition) | Site Name, State (ROD Date) | Region | | | | | 4th Edition | | | | | Note: The 4th edition report also added information on 10 innovative treatment technologies selected for remedial action in FY 1992 RODs, and 21 innovative treatment technologies at non-Superfund sites. Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). | Drew Lausch
215-597-3161
Ross Mantione
(Tobyhanna)
717-894-6494 | Will conduct ex situ passive volatilization | | Yes | | Bioremediation
(in situ) | Tobylanna Army Depot, PA
(Non-Superfund project) | ü | |---|---|------------|-------------|-------|----------------------------------|---|--------| | Ed Finnerty
212-264-3555 | Thermal desorption not needed because highly contaminated soil will be incinerated off-site instead. Remainder will be stabilized. ESD issued. | | Yes | | Thermal Desorption | Caldwell Trucking, NJ (09/25/86) | 2 | | Jeff Gratz
212-264-6667 | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | | Yes | | In Situ Flushing | Naval Air Warfare Center, OU 4,
NJ (02/04/91) | 2 | | Jeff Gratz
212-264-6667 | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | | Yes | | In Situ Flushing | Naval Air Warfare Center, OU 2,
NJ (02/04/91) | 2 | | Jeff Gratz
212-264-6667 | Remedy involves pump and treat with on-site discharge. Soil is not being targeted. | | Yes | | In Situ Flushing | Naval Air Warfare Center, OU 1,
NJ (02/04/91) | 2 1 | | Ross Gilleland
617-573-5766 | Will incinerate off-site | | Yes | | Solvent Extraction | Pinette's Salvage Yard, ME
(05/30/89) | 1 | | Joe Lemay
617-573-9622 | Pilot study showed that dechlorination increased the volume and that the waste still needed to be incinerated. An ESD to incinerate residuals off-site is in peer review. | | Yes | | Dechlorination | Re-Solve, MA (09/24/87) | 1 | | Contacts/Phone | Comments | Changed to | Deleted | Added | Technology Listed in 4th Edition | Site Name, State (ROD Date) | Region | | | | 5 | Sth Edition | | : | | | Note: The 5th edition report also adds information on 49 innovative treatment technologies selected for remedial actions in FY 1992 RODs, and 15 innovative treatment technologies used in removal actions. Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | Bruce Morrison
913-551-7755 | Pilot study showed in situ bioremediation was too costly. It appears that the present pump and treat system will be able to achieve cleanup levels. | | Yes | | Bioremediation (in situ) | Fairfield Coal & Gas, IA (09/21/90) | 7 | |--------------------------------|--|------------------|---|--------------------------|----------------------------------|--|--------| | Mike Overbay
214-655-8512 | Remedy has been suspended because of implementation difficulties and escalating cost. Cost doubled from cost projected in ROD. Issuing ROD amendment to cap in place. | | Yes | | Dechlorination | Tenth Street Dump/Junkyard, OK
(09/27/90) | 6 | | Ken Glatz
312-886-1434 | Bioremediation (in situ) was a misinterpretation of the ROD. All soil will be
excavated and treated by bioremediation (ex situ). | | Yes | | Bioremediation (In
Situ) | Cliffs/Dow Dump, MI (09/27/89) | 5 | | John Zimmerman
404-347-2643 | Listed as soil aeration in 3rd edition | | | Soil Vapor
Extraction | None | Hollingsworth Solderless, FL (04/10/86) | 4 | | Mark Fite
404-347-2643 | Bench-scale study of bioremediation (ex situ) showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | | Yes | | Bioremediation (Ex
Situ) | American Creosote Works, FL (09/28/89) | 4 | | Mark Fite
404-347-2643 | Bench-scale study of soil washing showed that the concentrations of carcinogenic PAHs were not adequately reduced. Also discovered dioxins at much higher concentrations | | Yes | | Soil Washing | American Creosote Works, FL (09/28/89) | 4 | | Tony DeAngelo
404-347-7791 | Will alter chemistry to achieve dechlorination during thermal desorption. | | | Thermal
Desorption | Dechlorination | Smith's Farm Brooks
(09/30/91) | 4 | | Contacts/Phone | Comments | On
Changed to | 5th Edition Deleted | Added | Technology Listed in 4th Edition | Site Name, State (ROD Date) | Region | | | | | *************************************** | | | ALCOHOLOGICA CONTRACTOR CONTRACTO | | Additions, Changes, and Deletions from the 4th edition report (October 1992) to the 5th edition report (September 1993). (continued) | 208-526-0436 | CACAVAIC, COIDOINAIC AIRC CAP. | | | | | 16. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. | | |--|--|-----------------------|-------------|--------------------------|-----------------------------|--|--------| | Linda Meyer
206-553-6636
Nolan Jenson | Treatability study of soil washing did not achieve results. Did not reduce the volume of waste. Will | | Yes | | Soil Washing | IDEL Warm Waste Pond, ID (12/05/93) | 10 | | Linda Meyer
206-553-6636
Nolan Jenson
(DOE)
208-526-0436 | Treatability study of acid extraction did not achieve good extraction rates. Did not reduce the volume of waste. Will excavate, consolidate and cap. | | Yes | | Acid Extraction | IDEL Warm Waste Pond, ID (12/05/91) | 10 | | Sean Hogan
415-744-2233 | Dropped by mistake from 4th edition | | | Soil Vapor
Extraction | None | Teledyne Semiconductors, CA (09/30/91) | 9 | | Joe Healy
415-744-2331
Kevin Graves
(CA)
510-286-0435 | Remedy added | | | Soil Vapor
Extraction | None | Signetics (AMD 901) TRW OU, CA (09/11/91) | 9 | | Fred Schlauffler
415-744-2365 | Misinterpretation of ROD during ROD analysis | | Yes | | Bioremediation (Ex
Situ) | Koppers Company (Oroville), CA (04/04/90) | 9 | | Erna Acheson
303-294-1971 | Soil washing did not meet performance standards and was expensive. ROD amendment issued early September 1993. | Thermal
Desorption | | | Soil Washing | Sand Creek Industrial OU 5, CO (09/28/90) | œ | | Contacts/Phone | Comments | Changed to | Deleted | Added | in 4th Edition | Site Name, State (ROD Date) | Region | | | | | 5th Edition | | Tachnology I istad | | | Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). | Andy Palestini
215-597-1286 | Facility no longer in operation. Can now excavate. Remedies being considered include thermal desorption. | | Yes | | Bioremediation
(In Situ) | L.A. Clarke & Sons, OU 1 (Soils),
VA (03/31/88) | w | |---|---|--|-------------|-------|-------------------------------------|--|--------| | Vance Evans
215-597-8485
Jeff Howard (VA)
804-762-4203 | Treatability studies indicated that the technology was not feasible. ESD under preparation. | Neutralization
with lime
(Ex Situ) | | | In Situ Flushing | U.S. Titanium, VA (11/21/89) | 3 | | Lisa Wong
212-264-9348 | SVE is a secondary remedy which may be used instead of thermal desorption, the primary remedy, if treatability studies show to be effective. | | Yes | | Soil Vapor
Extraction | Solvent Savers, NY (09/30/90) | 2 | | Jeff Gratz
212-264-6667
Robert Wing
212-264-8670 | Misinterpretation of the ROD during ROD analysis. | | Yes | | In Situ Flushing | Naval Air Engineering Center,
OU 7, Interim Action, NJ (03/16/92) | 2 | | Kim O'Connell
212-264-8127
(temporary) | Re-evaluation of site found significantly less contaminated soil than original estimates. Soil will be disposed off site. ESD signed July 1994. | | Yes | ! | Soil Washing,
Solvent Extraction | Ewan Property, OU2, NJ (09/29/89) | 2 | | Darryl Luce
617-573-5767
Mike Robinette (NH)
603-271-2014 | Misinterpretation of ROD during ROD analysis. Soil was not targeted for treatment. | | Yes | | In Situ
Soil Flushing | Tibbetts Road, NH (09/29/92) | 1 | | Terry Connelly
617-573-9638
Christopher Rushton
(ME DEP)
207-287-2651 | Determined that SVE would be more cost effective. ESD signed March/April 1994. | Soil Vapor
Extraction | | | Thermal Desorption | Union Chemical Co., OU 1, ME (12/27/90) | Prod. | | Contacts/Phone | Comments | Changed to | Deleted | Added | in 5th Edition | Site Name, State (ROD Date) | Region | | | | | 6th Edition | | Technology I istad | | | Note: The 6th edition report also adds information on 53 innovative treatment technologies selected for remedial actions in FY 1993 RODs. Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | Derek Matory
404-347-7791 | Another disposal method likely to be used. | | Yes | | Dechlorination | Arlington Blending & Packaging Co., OU1, TN (06/28/91) | 4 | |---|---|----------------------------|-------------|-------|--|--|--------| | Al Cherry
(404) 342-7791 | Waste will be disposed off-site more cost effectively | | Yes | | Chemical Treatment | Palmetto Wood Preserving, SC (09/30/87) | 4 | | Geizelle Bennett
404-347-7791
David Lown (NC)
919-733-2801 | Treatability study indicated that the technology could not treat the contaminants of concern because of materials problems. Will excavate and dispose off-site. ROD Amendment signed 3/94. | | Yes | | Bioremediation
(Ex Situ) | Charles Macon Lagoon,
Lagoon #10, NC (09/31/91) | 4 | | Jon Bornholm
404-347-7791 | Land treatment determined to be more cost effective. | Land
Treatment | - | | Soil Washing
Bioremediation
Slurry phase | Benfield Industries, NC (07/31/92) | 4 | | Patsy Goldberg
404-347-6265 | Groundwater not being treated. Only soil is being treated. | | Yes | | Bioremediation
(In Situ
Groundwater) | Cabot Carbon/Koppers
(Groundwater), FL (09/27/90) | 4 | | Joe McDowell
215-597-8240 | Only conducted air injection to facilitate pump and treat. Vapors were not extracted. Further investigation revealed that the Vadose Zone was not an area of concern. | | Yes | | Soil Vapor
Extraction | Henderson Road, PA (06/30/88) | 3 | | Andy Palestini
215-597-1286 | Technology changed because of uncertainty about the ability of bioremediation to reach treatment goals. ESD signed 3/94. | Re-use as fuel
off-site | | | Bioremediation
(Ex Situ) | L.A. Clarke & Sons,
Lagoon Sludge OU, VA (03/31/88) | ω | | Andy Palestini
215-597-1286 | Facility no longer in operation. Can now excavate. Remedies being considered include thermal desorption. | | Yes | | In Situ Flushing | L.A. Clarke & Sons, OU 1 (Soils),
VA (03/31/88) | ω | | Contacts/Phone | Comments | Changed to | Deleted | Added | Technology Listed
in 5th Edition | Site Name, State (ROD Date) | Region | | | | | 6th Edition | | | | | Note: The 6th edition report also adds information on 53 innovative treatment technologies selected for remedial actions in FY 1993 RODs. Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | Ron Stirling
(USACE)
402-221-7664 | Groundwater remediation not planned for this area. | | Yes | | Bioremediation
(In Situ)
(Groundwater) | Holloman AFB, Main POL Area,
NM | 6 | |--|---|----------------------------|-------------|---|--|---|--------| | Gregory Fife 214-655-6773 | Dechlorination not being pursued because of cost considerations. | Incineration
(Off-site) | | | Dechlorination | Fruitland Drum, NM (09/08/90) | 6 | | Daryl Owens
312-886-7089 | Incineration was contingency remedy in ROD. State had concerns about effective means of soil washing and cost of incineration has decreased; ESD will be signed Fall 1994. | Incineration
on-site | Yes | | Soil Washing and Bioremediation (ex situ) of fines |
MacGillis and Gibbs Co./Bell
Lumber and Pole Co., MN
(12/31/92) | 5 | | Anita Boseman
312-886-6941
Timothy Hull (OH)
513-285-6357 | Determined to be too expensive. Other alternatives being evaluated. ROD Amendment planned. | | Yes | | Soil Washing | United Scrap Lead/SIA, OH
(09/30/88) | 5 | | Tom Alcamo
312-886-7278 | Adding technology to treat more highly contaminated soil. | | | Bioremediation
(Ex Situ)
Magnetically
Enhanced Land
Farming | Bioremediation
(In Situ) | Allied Chem & Ironton Coke, OU 2,
OH (12/28/90) | 5 | | Tom Alcamo
312-886-7278 | Adding technology to treat more highly contaminated soil. | | | Bioremediation
(Ex Situ) (Land
Farming) | Bioremediation
(In Situ) | Allied Chem & Ironton Coke, OU 2, OH (12/28/90) | 5 | | Bruce Sypniewski
312-886-6189 | Technology changed to off-site thermal treatment (either thermal desorption or incineration) because of reduced volume of contamination found during RD investigations. ROD amendment signed 5/31/94. | Thermal
Treatment | Yes | | Bioremediation
(Ex Situ) | South Andover Salvage Yard, OU 2,
MN (12/24/91) | 5 | | Contacts/Phone | Comments | Changed to | Deleted | Added | Technology Listed in 5th Edition | Site Name, State (ROD Date) | Region | | | | | 6th Edition | | | | | Note: The 6th edition report also adds information on 53 innovative treatment technologies selected for remedial actions in FY 1993 RODs. Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | | | 6th Edition | | | | |--------|--|--|-------|-------------|---|--|---| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 6 | Holloman AFB, Main POL Area,
NM | Air Sparging | | Yes | | Groundwater remediation not planned for this area. | Ron Stirling
(USACE)
402-221-7664 | | 6 | South Valley, NM (09/30/88) | Soil Vapor
Extraction | | Yes | | Determined there was insignificant concentration to warrant remediation. No further action. | Bert Gorrod
214-655-6779 | | 6 | Tinker AFB (Soldier Creek Bldg. 3001), OK (08/16/90) | Soil Vapor
Extraction | | Yes | | Determined that SVE was not viable. No alternative selected at this point. | Susan Webster
214-655-6784
Major Richard
Ashworth (USAF)
405-734-3058 | | 80 | Rocky Mountain Arsenal, M-1
Basins (OU 16), CO (02/26/90) | In Situ
Vitrification | | Yes | | Remedy cancelled due to problems with contractor. New ROD being negotiated. | Connally Mears
303-293-1528 | | ∞ | Portland Cement Co. (Kiln Dust No. 2 and No. 3) OU2, UT (03/31/92) | Chemical Treatment | | Yes | | Not considered innovative | Mike McCeney
303 293-1526 | | 9 | Mesa Area Ground Water
Contamination, AZ (09/27/91) | Soil Vapor
Extraction | | Yes | | Removed from NPL, deferred to the State | Maurice Chait
602-962-2187
Richard Oln
602-207-4176 | | 9 | Castle Air Force Base, OU 1, CA (09/30/91) | Bioremediation
(In Situ
Groundwater) | | Yes | Pump and
Treat with Air
Stripping | Bench-scale test indicated that the technology did not work. No ESD or ROD amendment being issued. | David Roberts
415-744-1487
Brad Hicks (USAF)
209-726-4841 | | 9 | Teledyne Semi Conductors, CA (03/22/91) | Soil Vapor
Extraction | | Yes | | Misintrepretation of the ROD. SVE intended only for Spectra Physics, the adjacent site. | Sean Hogan
415-744-2233
Carla Dube
510-286-1041 | Note: The 6th edition report also adds information on 53 innovative treatment technologies selected for remedial actions in FY 1993 RODs. Additions, Changes, and Deletions from the 5th edition report (September 1993) to the 6th edition report (September 1994). (continued) | | | Tachallan I idal | | 6th Edition | | | | |--------|--|-----------------------------|-------|-------------|------------|--|--| | Region | Site Name, State (ROD Date) | in 5th Edition | Added | Deleted | Changed to | Comments | Contacts/Phone | | 9 | FMC (Fresno), CA (06/28/91) | Soil Washing | | Yes | | Soil washing did not work because the soil had too many fines. Looking at thermal desorption and solidification/ stabilization as possible remedies. | Tom Dunkelman
415-744-2287
Mike Pfister (CA)
209-297-3934 | | 9 | Signetics (Advanced Micro Devices 901), CA (09/11/91) | Soil Vapor
Extraction | | Yes | | Combined ROD for Signetics,
AMD 901/902 and TRW
Microwave site. SVE is not
being done at the TRW OU.
Misinterpretation of ROD. | Darrin Swartz-Larson
415-744-2233
Kevin Graves (CA)
510-286-0435 | | 9 | Sacramento Army Depot, Oxidation Lagoons OU, CA (09/30/92) | Soil Washing | | Yes | | Technology canceled due to cost. Looking at solidification as an alternative. | Marlin Mezquita 415-744-2393 George Siller (USACE) 916-557-7418 Dan Oburn (Sacramento Army Depot) 916-388-4344 | | 10 | McChord AFB Washrack Treatment
Area, AK (09/28/92) | Bioremediation
(Ex Situ) | | Yes | | Additional studies showed treatment not needed. | Marie Jennings
206-553-1173 | Note: The 6th edition report also adds information on 53 innovative treatment technologies selected for remedial actions in FY 1993 RODs. Appendix E Completed Innovative Projects and Treatment Trains THIS PAGE INTENTIONALLY LEFT BLANK #### TABLE E-1 ## REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-1 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at remedial sites. It is intended to supplement, not replace, the information included in table A-1. ### TABLE E-1 REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS | _ | Region | | |--|---|-------------------------| | McKin, ME
7/86 to 4/87 | of Operation Cannon Engineering/MA 5/90 to 10/90 | Site Name, State, Dates | | Thermal desorption/ Canonie Env. Services Corp., Porter, IN | Thermal desorption/ Canonie Environmental Services Corp., Porter, IN | Technology/ | | Soil
(11,500 cy to a
depth of 10 ft.) | (Quantity) Soil (11,300 tons) | Media Treated | | BTEX, PAHs, TCE Criteria: 0.1 ppm TCE averaged over batch treatment volume 1.0 ppm per individual aromatic organic compound, and PAHs 10.0 ppm for total PAH constituents Input: Up to 3,310 ppm TCE Output: Less than 0.1 ppm TCE | Treated TCE, DCE, PCE, BTEX, Vinyl chloride, chlorodenzene, SVOCs Criteria: 0.1 ppm - TCE, DCE, PCE, chlorobenzene 0.2 ppm - Toluene, Total Xylenes 0.05 ppm - Vinyl chloride SVOCs - 3 ppm Benzene - 0.1 ppm Benzene - 0.1 ppm Input 500 - 3,000 ppm (Total VOCs) Output - <0.025 ppm | Key Contaminants | | Batch process: 8-9 cy/batch Residence time: 2 minutes/pass, 3 passes per batch 250-400°F soil exit temperature | Continuous operation 40 tons/hr 450 - 500° F Moisture content before treatment - 5% - 25% moisture Additives - dry soil (to reduce moisture content) | Operating | | Excavation
Screening
Mixing | Required Excavation Screening Mixing Dewatering | Materials
Handling | | Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption Residual solids deposited on- site. HEPA filters, baghouse bags, and PPE incinerated off-site | Management Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water was treated with carbon adsorption | Residuals | | | Comments The waste feed size (imitation for the equipment, 1.875 inches, was an important consideration. More information is available in the RA report available from Region 1. | | ### TABLE E-1 REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | د | |----------| | <u> </u> | | Ð | | _ | | ဖွ | | 9 | | 42 | | | | | | , | |--|---|--|--|--------------------------------------| | 2# | 2# | 2# | - | Region | | Waldick Aerospace
Devices (QU 1), NJ
5/93 to 10/93 | SMS Instruments/
Deer Park, NY
4/92 to 12/93 | King of Prussia, NJ
6/93 - 10/93 | Ottati & Goss, NH
6/89 to 9/89 | Site Name, State, Dates of Operation | | LOW temperature thermal treatment Rust Remedial Services, Inc., SC | Soil Vapor Extraction/ four Seasons Environmental, Inc. Greensboro, NC | Soil Washing using water and proprietary
additive Alternative Remedial Technologies, Inc. | Thermal desorption/ Canonie Envirormental Services Corp., Porter, IN | Technology/
Vendor | | Soil (4,000 cy) | Soil (1,250 cy) | Soil, sludge,
and sediments
(19,200 tons) | Soil (5,100 cy) | Media Treated
(Quantity) | | Criteria: Total VOCs: 1 ppm Total petroleum hydrocarbons: 100 ppm | VOCs, SVOCs Criteria: Levels specified for nine VOCs and nine SVOCs, ranging from 500 to 4,500 µg/kg Input: >1,000 ppm total VOCs Output: All soil samples met criteria | Metals (Chromium, Copper, Nickel) Criteria: 11 metal-specific cleanup levels based on risk of exposure | TCE, PCE, DCA, BTEX, TCA Criteria: 1 ppm - Total VOCs 0.1 ppm DCA, benzene, TCE, PCE Input: Up to 460 ppm TCE, 1200 ppm PCE Output: Less than 0.025 ppm TCE, PCE | Key Contaminants
Treated | | 20 tons/hr,
450 - 500°F | Two horizontal vapor extraction wells Vacuum of 378-406 w.c. inches (absolute) Depth to groundwater: 16-24 feet | Continuous process Feed rate: 25 tons/hr Addition of polymer and surfactants | Batch process
300-400° F soil
exit temperature | Operating
Parameters | | Screening | None (in situ) | Excavation
Screening | Excavation
Screening | Materials
Handling
Required | | Vapors treated in secondary thermal treatment unit; off-site s/s of treated soils | Exhaust gases were treated with a catalytic incinerator and scubber | Residual
sludges
disposed off-
site as non-
hazardous waste | Exhaust gas treated with baghouse, scrubber, and carbon adsorption Scrubber water treated with carbon adsorption Residual solids stabilized and redeposited on- site | Residuals
Management | | First use of full-
scale unit; actual
design capacity of
unit is approximately
35 tons/hr. | | X-ray fluorescene
(XRF) used on-site for
selective excavation | For more information on this project, see the close out report available from Region 1. | Comments | | Soil samples revealed the soil showed no further contamination | | | | | | Engineering-
Science | | | |--|--|---|---|--|---|--|--|--------| | Pilot study conducted 12/1/92 - 12/11/92 | | | In situ using one extraction well | VOCs (PCE, TCE) | Soil (1,000 cy) | Soil Vapor
Extraction | Defense General Supply Center, OU5, VA December 1-11, 1992 | 3# | | For further information on this application, see the Applications Analysis Report for the Terra Vac In situ Vacum Extraction System (EPA/540/A5-89/003). | Discharge of soil vapors through 30-ft stack No other offgas treatment | None | 19 vacuum extraction wells Depth of primary extraction well: 75 feet Operational inlet vacuum: 12 inches Hg | Carbon tetrachloride (CCL ₄) Criteria: 50 µg/liter CCL ₄ (drinking water limit); calculated to correspond to "non-detectable" concentration of CCL ₄ in exhaust gas for three consecutive months Input: Up to 2,200 ppm CCL ₄ (initial concentration) Output: Less than 2 ppb (final concentration) | Soil (16,000 sq ft to approximately 100 ft deep) Approximately 17,800 gallons of CCl, was removed from the soil | Soil Vapor
Extraction
Terra Vac,
Corp.
Costa Mesa, CA | Upjohn Manufacturing
Company, PR
1/83 to 3/88 | 2 | | For further information on this dechlorination project, see the Demonstration Test Report produced by EPA, Region 2. | Exhaust gas treated with cyclone, baghouse, acid gas scrubber, and activated carbon Treated solids were intended to be redeposited; however, they were determined to be unstable for backfilling | Excavation
Shredding,
grinding
Magnetic
screening | Continuous process Preheat/retort zone residence time: 30-40 minutes Retort zone temperature: 1,160° F Combustion zone temperature: 1,293° F Additives: Alkaline polyethylene glycol (APEG) | PCBs Criteria: Soils >10 ppm PCBs to be excavated and chemically treated 2 ppm PCBs established as remedial action contract cleanup level Input: 11-68 ppm PCBs Output: ≤2 ppm PCBs; one sample contained 21 ppm PCBs | soil (42,000
tons) | Thermal desorption with APEG dechlorination/ SoilTech ATP Systems, Inc. Porter, IN | Wide Beach Development,
NY
9/90 to 9/91 | ~ | | Comments | Residuals
Management | Materials
Handling
Required | Operating
Parameters | Key Contaminants
Treated | Media Treated
(Quantity) | Technology/
Vendor | Site Name, State, Dates
of Operation | Region | ## TABLE E-1 REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | Continuous feed
5-7 tons/hr | |--| | In situ None required | | Soil treated in 3 Site | | Materials Operating Handling Parameters Required | | | | | | |--|---|---|---| | 5 | U | y,
#± | Region | | Outboard Marine
Corp./Waukegan Harbor
(OU #3), IL
1/92 to 7/92 | Seymour Recycling, IN
Summer - 1990
August-October, 1986
January-February, 1987 | Ninth Averue Dump, IN
2/92 to 3/94 | Site Name, State, Dates
of Operation | | Thermal Desorption SoilTech ATP Systems, Inc. Porter, IN | In situ soil
bioremediation
ABB
Environmental
Services | In situ
Flushing
Fluor Daniel
Chicago, IL | Technology/
Vendor | | Soil/Sediments
(12,800 tons) | Soil
(12 acres to 10
ft deep,
approximately
43,500 cy) | Soil (64,000 cy) | Media Treated
(Quantity) | | PCBs Criteria: 97% removal of PCBs Initial: 23,000 ppm PCBs Final: Achieved >97% removal, <9 ppm PCBs in treated soil | 54 contaminants present, including TCE, TCA, and Carbon Tetrachloride No standards or criteria for this QU in RQD | VOCS (TCE, BTEX) PAHS Pumped until no more oil recovered Inside slurry wall treated water 90% reduction in COD | Key Contaminants
Treated | | Continuous process Residence time: 15 minutes Throughput: 8 tons/hr Preheat zone temperature: 850° f Retort zone temperature: 1200° f Combustion zone temperature: 1300° f | Additives - nitrogen, phosphorus, potassium, sulfur as fertilizer (200,000 gallons of nutrients added) | 14 extraction Hells, unknown number of trenches 6,300 gallons of oil recovered | Operating
Parameters | | Excavation
Mixing
Dewatering | Tilling | | Materials
Handling
Required | | Exhaust gas treated with cyclone, baghouse, acid gas scrubber, and activated carbon adsorption Condensed water discharged to sanitary sewer after triple filtration, UV oxidation, and carbon adsorption | Capping in
place | Recovered oil sent off-site for incineration, water recovered sent through oil/water separator, iron removal, and biological treatment prior to reinjection | Residuals
Management | | Reduced PCB levels much more than expected. | The soil became saturated quickly during this project, creating surface pools. The specially- designed tractor got stuck. | | Comments | | ъ | 55 | Region | |---|--|--------------------------------------| | Verona Well Field
(Thomas Solvent/Raymond
Road) (OU1), MI
3/88 to 5/92 | Anderson Development
(ROD Amendment), MI
11/92 to 6/93 | Site Name, State, Dates of Operation | | Soil vapor extraction (attempted nitrogen sparging) Terra Vac, Inc. Costa Nesa, CA | Thermal desorption Weston Services, Inc. | Technology/
Vendor | | Soil (26,700 cy, 36,000 ft ² to a depth of 20 ft.) | Soil (5,100
tans) | Media Treated
(Quantity) | | Initial soil concentration TCE 550,000 ppb; PCE 1.8 million ppb; Toluene 730,000 ppb Criteria in all post remedial soil samples; Total Xylenes 6,000 ppb; Toluene 16,000 ppb; Toluene 16,000 ppb; Toluene 16,000 ppb; Ethylbenzene 14,000 ppb; 1,1- DCE 10 ppb; trans-1,2-DCE 2,000 ppb; 1,1-TCA 4,000 ppb; 1,1-DCA 4,000 ppb; 1,2-DCA 10 ppb; 1,1-DCA 20 ppb; Methylene chloride 100 ppb;
cis-1,2 DCE 20 ppb; PCE 10 ppb; TCE 60 ppb | SVOCs (MBOCA) Input: 660 ppm (maximum) MBOCA Criteria: 1.684 ppm MBOCA Output: <1.684 ppm MBOCA Greater than 99% removal | Key Contaminants
Treated | | 1,400-1,600 cu ft/
min of air
Started >1,000
lbs/day removed
Total removed
45,000 lbs of VOCs
23 extraction
wells | Continuous with a retention time of 1 hour and throughput of 50-60 tons per day. Temperature 500 -600°F. Moisture content 40-50% Most of waste was treated twice because 1 hour retention time was not enough. | Operating
Parameters | | No materials handling; required installing extraction wells Vapors initially treated with carbon; then with CATOX; and then returned to carbon | Excavation screening dewatering Stockpiling | Materials
Handling
Required | | Spent carbon was regenerated (and eventually incinerated) | Wastewater discharged to treatment facility. Treated soils and fly ash sent to Type II Landfill. Carbon sent to RCRA disposal facility | Residuals
Management | | Initial estimate of product too low. Treatment equipment undersized. Needed better quantification of VOCs in soils to design appropriate size. Plan for enhancing system to deal with saturated soils and free product. Public information available includes performance report, and technical memo. | Site reports
available. | Comments | ### TABLE E-1 REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | | | T | | | |---|---|--|---|--------------------------------------| | œ | 7# | 6# | 5# | Region | | Rocky Mountain Arsenal (OU 18) Interim Response, CO 6/91 to 12/91 | Hastings GW
Contamination, Well No.
3, NE
6/92 to 7/93 | French Ltd.
Crosby, TX
1/92 to 12/93 | Pristine, OH
9/93 to 3/94 | Site Name, State, Dates of Operation | | Soil vapor extraction Vapor phase carbon adsorption to capture vapors Woodward Clyde Denver, CO | Soil vapor extraction Morrison Knudsen | Bioremediation
(slurry phase)
ENSR
Houston, TX | Thermal
desorption | Technology/
Vendor | | Soil (100 ft radius down to 60 ft; approximately 70,000 cy) | Soil 1 acre down
to 120 feet deep
(approximately
194,000 cy) | Soil/sludge
(150,000 cy) | Soil (19,400 cy) | Media Treated
(Quantity) | | TCE Initial extracted gas concentration 60 ppm Final extracted gas concentration 2 to 3 ppm | Carbon tetrachloride Initial: 100 ppm Final: <0.2 ppm Target removal rate achieved was 0.001 lb/hr, removed in excess of 500 lbs | Volatile organic compounds; PCBs; phenols, heavy metals Cleanup Goals: Benzo(a)pyrene - 9 ppm PCB - 23 ppm Volatile organic compounds - 43 ppm Arsenic - 7 ppm Benzene - 14 ppm | Criteria: aldrin - 15 µg/kg benzene - 116 µg/kg benzene - 116 µg/kg chloroform - 2,043 µg/kg DDT - 487 µg/kg 1,2-DCA - 19 µg/kg 1,1-DCE - 285 µg/kg dieldrin - 6 µg/kg PAHs - 14 µg/kg dioxîn - 0 µg/kg PCE - 3,244 µg/kg TCE - 175 µg/kg | Key Contaminants
Treated | | 145-335 cu. ft./min. of air Total removed 70 lbs. 2 extraction wells | In situ cyclic operation, operated for a total of 4,325 hours | In situ treatment | | Operating
Parameters | | No materials handling; required installing extraction wells | Vapors treated
with granular
activated
carbon (GAC) | Air sparging
Pumping
Dredging | | Materials
Handling
Required | | Vapors captured
on carbon | Carbon sent
off-site for
regeneration | In situ
treatment | | Residuals
Management | | Sampling indicated the presence of TCE mainly in the soil gas samples and not the soil samples | Soil Vapor extraction system exceeded predictions by the model due to sand and gravel present at the site. Cleanup occurred much quicker than predicted by the model. | First use of bioremediation technology at a Superfund site Cleanup of contaminated groundwater to be completed in 1996 | | Comments | TABLE E-1 REMEDIAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | | June | |---|----------| | | <u>.</u> | | - | 9 | | - | ø | | 9# | | ٥ | &
| Region | |---|---|--|--|--------------------------------------| | Intersil/Siemens, CA Intersil portion of the site completed Fall 93 | | Fairchild
Semiconductor (San
Jose), CA
1/89 to 6/90 | Wastech Chemical, UT
10/92 to 12/92 | Site Name, State, Dates of Operation | | Soil Vapor
Extraction
Geo-Matrix, San
Francisco, CA | | Soil vapor extraction, in situ flushing with treated groundwater | Bioremediation (Ex situ) Land treatment on an asphalt pad Harding/Lawson | Technology/
Vendor | | Soil | | Sail (42,000 cy) | Soil (1,100 cy) | Media Treated
(Quantity) | | VOCs (TCE 1,1,1-TCA,
XyLene) | Amended cleanup goals required SVE operation until VOC removal rate was ≤10% of initial rate, or VOC removal rate was <1% per day for 10 consecutive days | TCA, DCE, IPA, xylenes, acetone, Freon-113, PCE ROD originally stated cleanup target of 1 ppm | VOCs (Toluene,
Xylene) | Key Contaminants
Treated | | | | 39 extraction Wells; 28-144 scfm air flow rate; 15 inches of Hg operating vacuum | Tilled, addition of nutrients and water | Operating
Parameters | | | | None | | Materials
Handling
Required | | | | In situ
treatment;
carbon
adsorption of
off-gases | Soil
redeposited on
site | Residuals
Management | | | | Groundwater pump and treat was conducted in conjunction with SVE; slurry wall was constructed to limit contaminant migration | Air emission standards
not exceeded | Comments | | • | Region | |--|---| | Sacramento Army Depot
Tank 2 Operable Unit, CA
8/92 to 1/93 | Site Name, State, Dates
of Operation | | vapor extraction, extracted vapor treated with gas phase carbon adsorption, water treatment by the existing on-site UV- hydrogen peroxide treatment plant/Terra Vac, Inc. San Leandro, CA | Technology/
Vendor | | Soil (1,000 cy,
25 by 35 ft.,
31 ft. depth) | Media Treated
(Quantity) | | VOCs (Ethylbenzene,
PCE, MEK
Total Xylenes) Initial concentra-
tion: MEK 0.011 - 150 mg/kg Ethylbenzene 0.006 - 2,100 mg/kg PCE 0.006 - 390 mg/kg Total Xylene 0.005 - 11,000 mg/kg Clean up goal 1.2 mg/kg MEK 6 mg/kg Ethylbenzene 23 mg/kg total Xylene 0.2 mg/kg PCE 100 mg/kg total Xylene 0.2 mg/kg PCE 100 mg/kg total hydrocarbons | Key Contaminants
Treated | | 24 hours/day
Air flow rate:
16-365 scfm | Operating
Parameters | | None | Materials
Handling
Required | | Extracted vapor treated with gas phase carbon adsorption water treatment by the existing on-site UV-hydrogen peroxide treatment plant | Residuals
Management | | Freon - 113 unexpectedly extracted by system - impacted system operation | Comments | #### **TABLE E-2** ## REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-2 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at removal sites. It is intended to supplement, not replace, the information included in table B-2. | | | , | | |---|---|---|--------------------------------------| | N | N | 2 | Region | | Zhiegner Refining
Company (Removal)
2/93 - 6/93 | Vineland Chemical
Company, NJ
12/92
(Removal) | Signo Trading
International, Inc., NY
10/20/87 to 10/21/87
(Removal) | Site Name, State, Dates of Operation | | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | Mercury pretreatment precipiated mercury salts into mercury sulfide so that the mercury can be recovered and recycled. ENSCO | KPEG dechlorination/ Galson Remediation, Syracuse, NY | Technology/
Vendor | | Solid 100 lbs | Solid 100 lbs | Sludge (15
gallons) | Media Treated
(Quantity) | | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury in thatn nonrecycled salt. | Mercury initial concentration >10% mercury Final concentration of mercury in recyclable precipitate was greater than 80%. Less than 260 ppm if mercury
in thatn nonrecycled salt. | Dioxin
Input - 135 ppb
Output - 1 ppb | Key Contaminants
Treated | | Added salt to precipitate the mercury | Added sait to precipitate the mercury | Temperature:
150°C
Time: Overnight | Operating
Parameters | | None | None | None | Materials
Handling
Required | | Residual salts containing less than 260 pm mercury were incinerated off-site | Residual salts containing less than 260 pm mercury were incinerated off-site | Incineration of residuals (without dioxin contamination) at treatment, storage, and disposal facility | Residuals
Management | | No comments | First known Superfund
site where this
process has been
applied | | Comments | | | | _ | |---|--|---| | | Region
3 | | | General Refining
Company, GA
August-October, 1986
January-February, 1987 .
(Removal) | Site Name, State, Dates of Operation Avtex fibers, VA 4/90 to 8/91 (Removal) | | | Solvent extraction Resource Conservation Technology Company, Bellevue, WA | Technology/ Vendor Chemical treatment (oxidation using NaClO) OH Materials, Findlay, OH (ERCS Contractor) | | | sludge (3,448
tons) | Media Treated (Quantity) Sludge/water from storage unit (2 million gallons) | | | Input: PCB - 5.0 ppm Lead - 10,000 ppm Output: PCB - insignificant Lead - concentrated in solids | Key Contaminants Treated Carbon disulfide Criteria: <10 ppm - Carbon disulfide in the effluent Input: 50-200,000 ppm Carbon disulfide Output: <10 ppm Carbon disulfide Carbon disulfide | | | Continuous operation Time: 2 hours pH: 10 Temp: 20°C Rate: 27 tons/day Moisture content - 60% Additives: Sodium hydroxide Triethylamine | Operating Parameters Batch operation average retention time - 1 hour pH - 10 Additives: Sodium hypochloride. The retention time and reagent feed rates increased with increasing concentration of sludge in the contaminated water. | | | Excavation Screening Neutralization Size Reduction Mixing | Handring
Required
Pumping | | | Oil - used as fuel for kiln Water - treated, discharged off site Solids - solidified and disposed of on site | Residuals Management Salts from the reaction were removed with flocculation and clarification at existing treatment plant, pH adjustment | | | The oil recovered from the extractions process could not be sold because of an elevated metals content. The solvent could not be recovered due to leaks in system seals. The unit required a relatively uniform material so materials handling of the sludges proved difficult in the beginning of the project. The leadbearing solids produced by the dryer also required special handling. Finally, detergents in the sludge hindered oil/water separation. | Comments Carbon disulfide is unstable and will be found with other contaminants in aqueous waste stream. For additional information on this project, see the Removal Close Out Report available from EPA - Region III or OH Materials. | | | | | T., | |---|--|---| | 4 | 4 | Region | | CSX McCormick Derailment
Site, S.C.
(Removal) | Hinson Chemical, SC
12/88 to 3/92 (Removal) | Site Name, State, Dates
of Operation | | Soil vapor
extraction with
air flushing
MWRI | Soil vapor
extraction
OH Materials
Atlanta, GA | Technology/
Vendor | | soil (200,000
cy) | Soil
(60,000 cy, up
to 50 ft deep) | Media Treated
(Quantity) | | Benzene-toluene-
ethylbenzene-xylene
(BTEX)
130,000 gallon spill | Benzene, TCE, PCE,
DCA, MEK At completion: <10 ppm Total VOCs (In all samples); average <1 ppm Total VOCs | Key Contaminants
Treated | | Used a system of extraction and injection wells. 1,000 separate PVC wells. Injection wells 7 to 8 feet deep. Extraction wells 2-3 feet deep. Vapors captured and put through a knock out pot and incinerated. | In situ; continuous operation (except for occasional shut downs to allow soil gas to reach equilibrium in the pore spaces) | Operating
Parameters | | Brought in clay to cover the area, to prevent air from infiltrating | | Materials
Handling
Required | | Residual
wastewater sent
off-site for
treatment | Air emissions
captured on
vapor phase
carbon
No cap needed | Residuals
Management | | System was successful in decreasing concentration to cleanup goals. Had difficulties due to fluctuation of shallow ground water. Did not anticipate the change in ground water to be as drastic as it was. It decreased the efficiency, less vapors and more water. Now need to address ground water. Could have used the soil vapor extraction in a more limited area. | | Comments | ### TABLE E-2 REMOVAL ACTIONS: PERFORMANCE DATA ON COMPLETED PROJECTS (continued) | ے | |-----| | une | | | | 99 | | 4 | | 5 | # | * | Region | |---|--|--|--------------------------------------| | Parson Chemical, MI | TH Agriculture and
Nutrition
Albany, GA | Basket Creek Surface
Impoundment, GA
11/92 - 2/93 (Removal) | Site Name, State, Dates of Operation | | In situ
vitrification | Thermal desorption/ Focus and Williams Environmental Services, Inc. | Vacuum extraction of soil pile with horizontal wells (ex-situ) OHM | Technology/
Vendor | | Soil (3,000 cy) | Soil (4,318 tons) | Soil (2,000 cy) | Media Treated
(Quantity) | | | Pesticides Criteria: Reduction of 90% in concentration of alpha and beta BHC; 4,4'-DDT; and toxaphene Less than 100 mg/kg total OCL pesticides in treated soil | VOCS TCE, PCE, MEK, MIBK, BTEX High 33% VOCS Average 1-5% Criteria: TCE - 0.5 mg/L TCLP PCE - 0.7 mg/L TCLP All VOCs met TCLP Limits | Key Contaminants
Treated | | | Continuous operation 7.8 tons/hr 250 - 510° F exit gas temperature 15 minutes residence time | Vacuum pressure
monitored. 1,300
CFM/Manifold
3 manifold
6-7 wells/manifold | Operating
Parameters | | | Excavation
Screening | Surface impoundment used for disposal of waste solvents. Built an enclosure over the site. Excavated the soil and screened it with a power screen. Stacked on PVC extraction wells. Recovered VOCs with duct work and fan. Vapors incinerated. | Materials
Handling
Required | | | Soils: quenched Off-gasses: baghouse, water quench, reheaters, and carbon adsorption water: carbon adsorption | Residual soils and rejects from screening met TCLP limits and were disposed as nonhazardous as on RCRA Subtitle D landfill. Incinerated 70,000 lbs of VOCs | Residuals
Management | | Confirmatory sampling to occur after melt cools (approximately Summer 1995) | | \$2,000,000 total costs. Permeability in-situ soil was not good at first. Excavation and ex-situ treatment improved permeability. Shouldn't rule out if you can't do in situ. | Comments | | | 7 | | | | 7 | ٥ | | и | Region | |--|--|--|--|--|---|---|--|---|---| | | Scott Lumber, MO
12/89 to 9/91
(Removal) | | | | Crown Plating, MO
10/1/89 to 12/31/89
(Removal) | Traband Warehouse
PCBs, OK (Removal)
2/90 to 9/90 | | PBM Enterprises, MI
3/25/85 to 10/28/85
(Removal) | Site Name, State, Dates
of Operation | | | Land Treatment
RETEC
Billings, MT | | | EPA removal contractor | Dechlorination using the KPEG process | Solvent
Extraction/
Terra Kleen | Mid-American
Environmental
Service,
Riverdale, IL | Neutralization
with
hypochlorite
process | Technology/
Vendor | | | Soil (15,961
tons) | | | | Liquid (5
gallons) | Solids | | Film chips (464
tons or 1,280
cy) | Media Treated
(Quantity) | | Criteria: 500 ppm - Total PAH 14 ppm - Benzo(a)pyrene Output: 130 ppm Total PAH 8 ppm - Benzo(a)pyrene | Input:
1500 - 1000 ppm -
Total PAH
23 ppm -
Benzo(a)pyrene | Silvex - 32 ppb
Dioxin equivalents -
0.068 ppb | Dioxin equivalents - 24.18 ppb Output: | Input:
Silvex - 10,000 ppm | Criteria:
Dioxin -
<1 ppb | PCBs
Initial: 7,500 ppm | Output: 20 ppm | N | Key Contaminants
Treated | | 1st lift - 9 inches 2nd lift - 7 inches Cultivated approximately 1 to 2 times per week | Additives: Water phosphates Soil treated in 2 | 100% | Temperature - 72°C
pH - 13 | 36 hours (including time of equipment breakdown) | Batch operation
Retention time - | | | Time: 2-3 hours Additives: sodium hydroxide | Operating
Parameters | | | Tilling Removal of rocks and debris | | | | | | | Agitation | Materials
Handling
Required | | | None | | off-site | control Contaminated residual oil | Built an on-
site vacuum for
emissions | | treated off site Treated chips - landfilled (Subtitle D) | Rinse water,
runoff and
waste
hypochlorite - | Residuals
Management | | | | | | | | | | | Comments | | Region | Site Name, State, Dates
of Operation | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating
Parameters | Materials
Handling
Required | Residuals
Management | Comments | |--------|--|---|-----------------------------|---|---|-----------------------------------|-------------------------|---| | 9 | Gila River Indian
Reservation, AZ
3/28/85 to 6/24/85
(Removal) | In situ chemical treatment (followed by anaerobic bio- remediation) | Soil (3,220 cy) | | pH: 10.2 to 11.8 Moisture: wet Additives to soil: Sodium hydroxide, Water | | Bioremediation | | | | | remediation) EPA removal contractor | | Ethyl parathion - 86 ppm Methyl parathion - 24 ppm | | | | | | | | | | Output: | | | | | | | ****** | | | Toxaphene - 470 ppm | | | | | | | | | | Ethyl parathion - 56 | | | | | | | | | | Methyl parathion - 3 | | | | | | 9 | Gila River Indian
Reservation, AZ
6/24/85 to 10/23/85
(Removal) | In situ anaerobic biological treatment | Soil (3,220 cy) | ~ 3 | pH: 8.3 to 9.8 Additives to soil: Sulfuric acid, manure, sludge | Tilling | Capped in place | The biological treatment would have been more successful if the neutralization | | | | (preceded by chemical treatment) | | Output: 180 ppm | | | | after the chemical treatment had been more complete. The tearing of the plastic | | | | EPA removal
contractor | | | | | | sheets covering the soils allowed air in and prevented anaerobic activity. | | 9 | Roseville Drums, CA | In situ | Soil (14 cy) | Input: | | Tilling | | | | | (Removal) | EPA removal | | Dichlorobenzene -
4,000 ppm | וומרטורה, אמנפוי | | | | | | | contractor | | Phenol - 12,000 ppm | | | | | | | | | | Output: | | | | | | | | | | Dichlorobenzene -
140 ppm | | | | | | | | | | Phenol - 6 ppm | | | • | | | Region | Site Name, State, Dates | Technology/
Vendor | Media Treated
(Quantity) | Key Contaminants
Treated | Operating | Materials
Handling
Required | Residuals
Management | Comments | |--------|---|--|--|---|---|---|---|---| | 9 | Stanford Pesticide Site | Chemical | Soil (200 cy) | Methyl parathion | 9.0 | Tilling | | | | | 3/20/87 to 11/4/87 | treatment -
alkaline | | Input: 24.2 ppm | Moisture: wet
Additives to soil: | (in situ, 3 | | | | | (Removal) | hydrolysis | | • | ash, | | | | | | | EPA removal contractor | | ourbar. 0.00 ppm | act Agree cal Sol | ACC X | | | | 9 | Poly-Carb, Inc., NV | Land treatment | Soil (1,500 cy) | Input: | Additives: water | Excavation | Leachate | This treatment used | | · | (Removal) | washing | | Phenot 1,020 ppm | | Placement in | treatment with | and soil flushing in | | | | EPA removal | | o-cresol - 100 ppm | | pit | activated | or a cop. | | | | COLLI | | m- and p-cresol - | | Irrigation | <u> </u> | | | | | | | Output: | | Tilling | | | | | | | | Phenol - 1 ppm | | | | | | | | | | o-cresol - 1 ppm | | | | | | | | | | m- and p-Cresol -
0.92 ppm | | | | | | 10 | Drexler-RAMCOR, WA
7/92 to 8/92
(removal) | Low temperature thermal desorption treatment. Thermally treat 3,000 tons of soil on-site up to 700°F | Soil 3,000 tons
(approximately
3,000 cy) | Petroleum
hydrocarbons
Polynuclear
Aromatics, BTEX
(Benzene, Toluene,
Ethylbenzene, Xylene | 16 hours/day 12 to 15 tons/hr Operating temperature up to 700°F | Excavation screening Removed material greater than 2 inches. Rock | Treated soil was backfilled back into the excavated areas on-site. Soil that did not meet the | Total cost
approximately
\$250,000. | | | | Four Seasons | | 200 ppm TPH was target. Initial TPH was 70,000 ppm - (high) 15,000 - 20,000 ppm (average). | Vapors treated by catalytic oxidation | station for particles greater than 2 inches. Steam cleaned large rocks. | targets was re-
treated. Wastewater was
treated on-site
through carbon
filters. | | | | | | | Treated soil
TPH was 100 - 200
Ppm | | Added water after treatment for dust suppression | | | ### TABLE E-3 ## OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS Table E-3 provides summary information on the performance and operating parameters for applications of innovative treatment technologies that have been completed at non-Superfund sites. It is intended to supplement, not replace the information included in table C-1. ### TABLE E-3 OTHER FEDERAL PROGRAMS: PERFORMANCE DATA ON COMPLETED PROJECTS | ے | |----| | 5 | | ត | | ٠. | | 9 | | ĕ | | ឩ | | | | | | | | | | | |--|--|---|---|--------------------------------------|---|--|--|---| | • | 9 | | | | 6 | | υī | Region | | Marine Corps. Mountain Warfare Center Bridgeport, CA 8/89 to 11/89 (Navy) | Ft. Ord Marina, Fritzche
AAF Fire Drill Area, CA
Winter 1991
(Army) | | | | Matagorda Island Af
Range, TX
10/92 to 2/28/93 | | Saginaw Bay Confined Disposal Facility, MI October 1991 to June 4, 1992 (Army) | Site Name, State, Dates
of Operation | | Bioremediation
(ex situ); heap
pile bioreactor | Land farming | contamination under one UST. CCC, Inc. San Antonio, TX | Bacteria added and mechanically mixed. | All constructed on abandoned runway. | Ex situ
bioremdiation;
solid phase | an additive
Bermann USA
Stafford
Springs, CT | Soil washing;
Water with
flocculant and
surfactant as | Technology/
Vendor | | Soil (7,000 cy) | Soil (4,000 cy) | | | | Soil (500 cy) | | Sediment (150
cy) | Media Treated
(Quantity) | | PAHs (petroleum
hydrocarbons,
diesel), Metals
(Lead)
After 2 months of
operation the TPH
levels were 120 ppm | TCE, MEK, TPH, BTEX | | Texas water commission standards 100 ppm for TPH 30 ppm for combined BTEX | TPH - 3,400 ppm
BTEX - 41.3 ppm | TPH, PAHs
benzene-toluene-
ethylbenzene-xylene | Output Sand = 0.20 mg/kg Output Organics = 11 mg/kg Output Fines = 4.4 mg/kg | PCBs Input Sediment = 1.6 | Key Contaminants
Treated | | | Initial concentration > 1,000 ppm End concentration < 200 ppm | | Ambient
temperature
bacterial added to
waste | 9 inch layers
treated. | Batch process Retention time: 3 months | | 30 cy of sediment
treated per day | Operating
Parameters | | Excavation | None | | some mixing. | | Excavated approximately 40 by 60 ft | | Dredging
Screening
Size Reduction | Materials
Handling
Required | | | None | | | | Backfilled the soil into the excavation | Wastewater discharged to confined disposal facility | Residuals were
left at the
facility | Residuals
Management | | Temperature, pressure and moisture content are monitored Bill Major (DoD) 805-982-1808 | Gail Youngblood
408-242-8017 | | | | Island is now a wildlife refuge, has an endangered species. | | Forced cold-weather shut down is a limitation | Comments | ntinued) June 1993 | | 9 | 9# | Region | |--|--|---|---| | Naval Communication
Station, Scotland
February to October 1985
(Navy) | Davis Monthan AFB, AZ
July 1991 to March 1992 | Luke AFB, AZ
11/92 to 5/9 | Site Name, State, Dates
of Operation | | Bioremediation
In situ soil,
in situ ground
water | Bioremediation
(In situ soil) | Soil vapor extraction with air flushing and thermal oxidation of off-gases Jacobs Engineering | Technology/
Vendor | |
Soil,
Groundwater
Soil quantity
approximately
800 m² in area,
depth unknown | Soil (440 cy) | Soil (35,000 cy) | Media Treated
(Quantity) | | TPH (No. 2 diesel
fuel) | PAHs (Petroleum
Hydrocarbones) | VGCs (2-hexanone, 2-butanone, 4-methyl 2 pentanone, BTEX) Removed approximately 11,000 lbs of vapors and 4,000 lbs of condensate | Key Contaminants
Treated | | Microorganisms
function best
between 20°C and
35°C. | | In situ down to
100 feet | Operating
Parameters | | Run-off water
collected in a
trench | | None | Materials
Handling
Required | | None | | Vaports were
thermally
oxidized | Residuals
Management | | The contaminated area had considerable slope, and the contaminated soil was a thin layer over a relatively impermeable rock substrate. | | Total petroleum hydrocarbons were present but were too heavy to volatilize. Would recommend combining SVE with in situ bioremediation to treat contaminants that could not be extracted with the SVE. | Comments | ### TABLE E-4 # REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Table E-4 lists the sites at which innovative treatment technologies are used together with established or other innovative treatment technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. SUPERFUND REMEDIAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES Followed by Followed In Situ Bioremediation (1 site) Soil Washing (1 site) Solidification/Stabilization (5 sites) In Situ Bioremediation (4 sites) Solidification/ Stabilization (1 site) Bioremediation (5 sites) 00000 1112 Incineration (4 sites) **TOTAL TREATMENT TRAINS = 38** In Situ Flushing (2 sites) Incineration (1 site) FIGURE E-1 ₩ 8 93 (3) S/S (1 site) 욺 3 S/S (5 sites) Soil Washing (1 site) Incineration (2 sites) || S 3 Dechlorination (2 sites Solidification/ Stabilization (1 site) E-23 | Dechlorination Followed by | | | Soil Washing Followed by (continued) | ontinued) | | |--|--|---------|--|--|---| | Soil Washing | Myers Property | 2 | Incineration Incineration Solidification/Stabilization | Arkwood
South Cavalcade Street
Gould, Inc | | | Ex Situ Bioremediation Followed by | wed by | | | | Ī | | Solidification/Stabilization | Whitmoyer Laboratories, OU 3 | PA | Solvent Extraction Followed by | <u>va</u> | | | Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization Solidification/Stabilization | J. H. Baxter Cape Fear Wood Preserving Oklahoma Refining Co. PAB Oil | L O N C | Incineration
Solidification/Stabilization | United Cresoting O'Connor | | | In Situ Flushing Followed by | | | Thermal Desorption Followed by | <u>d by</u> | | | THE STATE THE TANK TH | • | | Dechlorination | Arlington Blending & Packaging | | | In Situ Bioremediation | Peak Oil/Bay Drums, OU | H | | Co., OU 1 | | | In Situ Bioremediation | Pester Burn Pond | KS | Dechlorination | Smith's Farm Brooks, OU 1 | | | In Situ Bioremediation | Montana Pole Company | TM | Incineration of Organic Vapors | | | | Soil Vapor Extraction Followed by | red by | | Incineration of Organic Vapors | | | | In Situ Bioremediation | Swope Oil & Chemical Co. | Z | Solidification/Stabilization | Waluck Actospace Devices USA Letterkenny (SE Area, OU 1) | | | In Situ Flushing | JADCO - Hughes | NC : | Solidification/Stabilization | Acme Solvent Reclaiming, Inc., OU 2 | 7 | | In Situ Flushing | Pasley Solvents and Chemicals, Inc. | YN | Solidification/Stabilization | Carter Industries | | | Solidification/Stabilization Soil Washing | Genzale Plating Company, OU 1
Zanesville Well Field | HO | Solidification/Stabilization | Martin Marietta (Denver Aerospace) | | | Soil Washing Followed by | | | | | | | Bioremediation Bioremediation Bioremediation | Cabot Carbon/Koppers Whitehouse Waste Oil Pits Cape Fear Wood Preserving | IN PIP | | | | | Bioremediation | Moss-American Koppers (Oroville) | CA W | | | | ### **TABLE E-5** ## REMOVAL ACTIONS: TREATMENT TRAINS WITH INNOVATIVE TREATMENT TECHNOLOGIES prevent the emission of volatile contaminants during excavation and mixing, or to address multiple contaminants in a single medium. technologies in treatment "trains." Technologies may be combined to reduce the volume of material requiring further treatment, to Table E-5 lists the at which innovative treatment technologies are used together with established or other innovative treatment ### Chemical Treatment Followed by | In Situ Bioremediation In Situ Flushing Followed by In Situ Bioremediation | Gila River Indian Reservation Polycarb | NA Y | |--|---|------| | In Sid Dioremediation | roycato | 3 | | Bioremediation | Southeastern Wood Preserving | MS | | Solvent Extraction Followed by | K | | | Solidification/Stabilization | General Refining | GA | U.S. Environmental Protection Agency Region 5, Library (PL-121) 77 West Jackson Boulevard, 12th Flour. Chicago, 12 60604-3590 **G-35** * Environmental Protection Agency NCEPI United States P.O. Box 42419 Cincinnati, OH 45242-0419 Official Business Penalty for Private Use \$300 EPA 542-R-94-005 ۲ 44145 U.S. Environmental Protection Agency Region 5, Library (PL-12J) 77 West Jackson Boulevard, 12th Floor Chicago, IL 60604-3590 THE PERSON NAMED AND POST OF